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Introduction

Musculoskeletal diseases are one of the most common

causes of chronic disabilities, and loss of bone and muscle is

a growing issue in relation to public health1-3. Mechanical load-

ing is an important factor controlling bone and muscle mass4,5.

Unloading leads to significant loss of bone and muscle mass,

which may result in osteoporosis and sarcopenia in bedridden

patients, patients with spinal cord injuries, and astronauts6-8.

Thus, prolonged bed rest studies in humans have shown re-

duced BMD of the lumbar spine, hip, and lower extremities,

and decreased trabecular BV/TV and trabecular thickness7,9. 

In 2001, Chappard et al. described a model, where botu-

linum toxin A (BTX) was used to paralyze the hind limb mus-

culature in rats in order to study the effect of disuse on the

skeleton10. In the motor endplates, BTX inhibits the release of

acetylcholine from the pre-synaptic motor nerve terminals.

Subsequently, action potentials from the motor nerve can no

longer be transmitted to the muscle, and paralysis of the mus-

cle is thereby induced. In rodents, we found that this paralysis

leads to substantially reduced muscle mass of the affected limb

followed by decreased bone mass and loss of bone strength11,12.

Furthermore, this condition results in a significant decrease of

mineralising surfaces and bone formation at the periosteal

bone surface11,12.

Growth hormone (GH) is an important regulator of postna-

tal growth and bone mass, and exerts its effect either directly

or indirectly via IGF-I. GH stimulates the liver to produce and

secrete IGF-I, and, in addition, many peripheral tissues also

produce IGF-I including bone and skeletal muscles13,14. Lo-

cally produced IGF-I acts in an autocrine/paracrine manner. In

vitro studies of osteoblasts show that GH can increase DNA

synthesis, cell proliferation, and production of alkaline phos-

phatase and type I collagen15,16. Likewise, it has been found

that IGF-I increases osteoblast activity and proliferation17,18.
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Experimental studies shows that GH can increase bone mass

and enhance mechanical strength of bone in both intact and

osteopenic rodents19-21, mainly due to a pronounced increase

in the formation of new bone at the periosteal surfaces19,21. Fur-

thermore, GH is a potent anabolic agent known to promote

skeletal muscle cell protein synthesis and growth22. Several

studies in rodents have shown that GH can induce a substantial

increase in muscle mass23,24. Thus, GH is a proven anabolic

factor capable of increasing both bone and muscle mass.

In GH-treated hypophysectomised rats, skeletal unloading

completely prevents increase in trabecular bone volume, and

severely inhibits periosteal bone formation25, and the response

to GH in terms of increase in local production/content of IGF-

I seems to be site dependent26. Furthermore, in GH-deficient

dwarf rats it has been shown that skeletal unloading inhibits

activation of IGF-I signalling pathways, which thereby leads

to IGF-I resistance27. However, it should be noted that hy-

pophysectomy leads to absence of other pituitary hormones

including thyroxin and sex hormones, as well as a substantial

weight loss.

Therefore, the aim of the present experiment was to inves-

tigate whether GH could counteract paralysis-induced bone

loss in normal rats assessed by bone strength, bone micro-ar-

chitecture, and bone turnover. Furthermore, the purpose was

to study whether paralysis-induced loss of muscle mass could

be attenuated by GH administration.

Materials and methods

Animal, design, and drug administration

Sixty female Wistar rats, 14 weeks old, were randomized

by weight into 5 experimental groups with 12 animals in each

group: baseline, control, BTX, BTX+GH, and GH. The rats

were anaesthetized with 3% isoflurane (Isoflurane, Baxter,

Deerfield, IL), and the right hind limb was shaved. Botulinum

toxin type A (Botox, Allergan, County Mayo, Ireland) was dis-

solved in saline at a concentration of 20 units/ml. The right

hind limb of each animal was injected (im) with a total of 4

units of BTX distributed as 1 unit into the following locations:

the upper part of quadriceps, the lower part of quadriceps, the

hamstrings, and the calf muscles. The rats were monitored dur-

ing recovery from the anaesthesia, and the following hours in

order to detect unwanted side effects. 

Human growth hormone (Norditropin, Novo Nordisk, Gen-

tofte, Denmark) was given as subcutaneous (sc) injections 5

times weekly two times a day, at a dosage of 5 mg/kg/d starting

at the day of the BTX-injections. The control group and the

BTX group were injected with saline. The GH dosing regimen

was based upon the findings of Ortoft et al.19,20. The animals

were injected intraperitoneally (ip) with alizarin red (20 mg/kg,

Sigma-Aldrich, St. Louis, MO) 6 day prior to study start, and

tetracycline (20 mg/kg, Sigma-Aldrich, St. Louis, MO) and

calcein (15 mg/kg, Sigma-Aldrich, St. Louis, MO) 10 and 3

days before termination of the study, respectively. 

The gait ability of 6 animals in each group was assessed in

the morning at day –1, 1, 2, and thereafter twice a week using

a gait ability score originally designed for mice28. The animals

were group-housed with a cycle of 12 h of light and 12 h of

darkness. Standard rat chow (Altromin 1324, Brogaarden,

Lynge, Denmark) and tap water were provided ad libitum at a

freely accessible level in the cages. The animals were weighed

at the beginning of the experiment and thereafter once a week.

The experiment lasted for 4 weeks, after which the animals

were anaesthetized with 3% isoflurane as inhalation and killed

with an overdose of 200 mg/kg pentobarbital (ip) (Mebumal,

SAD, Copenhagen, Denmark). Blood was obtained from vena

cava inferior, serum isolated, and stored at −80°C. The left and

right rectus femoris as well as the right sternocleidomastoid

muscle were isolated and the wet weight (WW) determined.

The rectus femoris muscles were immersion-fixed in 0.1 M

sodium phosphate buffered formaldehyde (4% formaldehyde,

pH 7.0) for 48 h. The femora were carefully cleaned from all

soft connective tissue, and stored in Ringer’s solution at −20°C

for the subsequent analyses.

The experiment complied with the EU Directive

2010/63/EU for animal experiments, and was approved by the

Danish Animal Experiments Inspectorate.

Determination of total IGF-I in serum

The total IGF-I levels were assayed using a commercially

available ELISA kit (Quantikine # MG100, R&D Systems,

Minneapolis, MN). The ELISA was performed according to

the manufacturer’s instructions, and standards, controls, and

samples were tested in duplicate. The microplate was read at

a wavelength of 460 nm with wavelength correction at 560 nm

in a Victor 1420 multilabel spectrophotometer (Wallac, Turku,

Finland). The total IGF-I serum concentrations were deter-

mined from the standard curve by matching the absorbance

readings with the corresponding IGF-1 concentrations. The

sensitivity of the kit was 8.4 pg/ml, intra-assay precision was

5.6%, and the inter-assay precision was 9%.

Average muscle cell cross sectional area (CSA) 

The central part of the rectus femoris muscle was embedded

in methylmethacrylate (Technovit 7100, Kulzer, Germany).

Two-μm-thick sections were cut using a microtome (Jung

RM2065, Leica Instruments, Germany) and stained with Mas-

son Trichrome. The mean muscle cell cross sectional area

(CSA) was determined using a microscope (Nikon Eclipse 80i,

Japan) with a motorized specimen stage (Prior 138, Cam-

bridge, England) and a digital camera (Olympus DP72, Tokyo,

Japan) connected to a computer with NewCAST software (Vi-

siopharm, Hørsholm, Denmark). Each section was sampled

using systematic uniformly random sampling29. That is, from

a random starting point a new field of view was sampled with

a fixed x- and y-distance from the previous field of view by

use of the motorized stage. Using a 2D unbiased counting

frame, the striated muscle cell profiles within the counting

frame and not touching the exclusion lines were sampled. On

average 200 muscle cell profiles were sampled for each ani-

mal. At a total magnification of ×1180 the CSA of the individ-
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ual muscle cell profiles was estimated using the 2D nucleator

principle30. In brief, the centre of each muscle cell profile was

marked, 4 intercept lines radiating from the centre point was

automatically drawn, and the intersections between the cell

membrane and the intercept lines were marked interactively.

From this the CSA of each muscle cell profile was automati-

cally estimated. The investigator was blinded for the group dis-

tribution during the evaluation.

Dual Energy X-ray Absorptiometry (DEXA)

The femora were placed in a pDEXA scanner (Sabre XL,

Norland Stratec, Pforzheim, Germany) and scanned using a

pixel size of 0.5 mm × 0.5 mm. Bone mineral content (BMC)

and areal bone mineral density (aBMD) were determined.

Quality assurance was performed by scans of the two solid

state phantoms provided with the scanner. The coefficient of

variation (CV) of rat femur aBMD is 2.8% in our laboratory.

Mechanical testing

The length of the femora was measured with an electronic

caliper, and the midpoint was marked. The maximum load of

the mid-femur (three-point-bending test), the femoral head

(compression test), and the distal femoral metaphysis (com-

pression test) was determined as previously described in de-

tail11. After the three point bending test, an approximately

4-mm-high specimen with plano-parallel ends was sawn from

the distal part of the femoral metaphysis just above the upper-

most part of the patellofemoral joint cartilage with a diamond

precision saw (Exakt Apparatebau, Norderstedt, Germany).

Micro Computed Tomography (μCT)

Before the mechanical testing, the distal femoral metaphysis

were scanned using a desktop μCT scanner (Scanco μCT 35,

Scanco Medical AG, Brüttisellen, Switzerland) in high reso-

lution mode (1000 projections/180°) with a spatial resolution

of 6 × 6 × 6 μm3, an X-ray tube voltage of 70 kVp and current

of 114 μA, and an integration time of 800 ms. A 3.3-mm-high

volume of interest, including trabecular bone, but excluding

cortical bone and primary spongiosa, was semi manually

drawn on each specimen excluding a region of 100 μm adja-

cent to the top and bottom of the specimens in order to exclude

sawing residues. The 3D data sets were low-pass filtered using

a Gaussian filter (σ= 1.3, support= 2) and segmented with a

fixed threshold filter (642.6 mg HA/cm3) according to current

guidelines31. The minimum point between the marrow and the

bone peak in the attenuation histogram was automatically de-

termined using IPL (version 5.11, Scanco Medical AG, Brüt-

tisellen, Switzerland) for 5 femora from each group, and the

median of these thresholds was used for all segmentations. The

structural evaluation was carried out using the software pro-

vided with the μCT scanner (version 6.0, Scanco Medical AG,

Brüttisellen, Switzerland). 

The micro-structural measures included: BV/TV, Tb.Th,

Tb.Sp, Tb.N, CD, SMI, and vBMD. The computation of these

structural measures has previously been described in detail32.

Static bone histomorphometry

Mid-diaphyseal sections with a mean thickness of 134 μm

were sawed off the proximal part of the femoral diaphysis as

close as possible to the fracture point from the three-point

bending, and bone area, marrow area, tissue area were deter-

mined as previously described11.

Dynamic bone histomorphometry

For cortical dynamic histomorphometry the mid-diaphyseal

cross sections used for static bone histomorphometry were

mounted on glass slides. Using the above mentioned micro-

scope, digital images were projected onto a computer monitor

with a star-shaped grid with 16 radiating arms superimposed.

The grid was placed in the centre of the medullar cavity, so

that the radiating lines of the grid randomly intersected the en-

dosteal and periosteal perimeter33. At a magnification of ×1180

the number of intersections with either single labels (calcein

or tetracycline) or double labels at either the endosteal or pe-

riosteal surface was counted. In case of intersection with a dou-

ble label the distance between the labels was determined using

the ruler function in NewCAST. In accordance with current

guidelines, the mineral appositional rate (MAR) was calcu-

lated as the distance between the labels divided by the interla-

beling period, the mineralizing surfaces (MS/BS) were

calculated as the number of intersections with doubles labels

plus half the number of intersections with single labels divided

by the total number of intersections with bone surfaces, and

the bone formation rate (BFR/BS) was determined as MAR ×

MS/BS34. Furthermore, in order to estimate whether resorption

of bone present at study start took place during the experimen-

tal period, the number of intersections with alizarin labels

(Ali.S/BS) was also counted35.

Statistics

Data are presented as mean ± SD. Differences between all

groups except GH were evaluated using One Way ANOVA fol-

lowed by Holm-Sidak test for multiple comparisons. In case

of variance in homogeneity or that data were not normally dis-

tributed (Shapiro-Wilk test), ANOVA on ranks followed by

Dunn’s test was applied (this was the case for: 3-point bending

test, Tp.Sp, CD, periosteal MS/BS, endosteal MS/BS, MAR,

and BFR/BS). GH was compared with controls using a Stu-

dent’s t-test. Differences were considered significant at

P<0.05.

Results

Body weight, femur length, muscle weight and serum IGF-I

The body weight of the BTX-injected animals decreased

with 9% during the first 2 weeks of the experiment, and there-

after increased slightly (Figure 1A and Table 1). For all time

points except at the start of the experiment, the body weight

of the BTX groups was significantly lower than that of the con-

trols. In contrast, BTX+GH maintained BW at a level not sig-

nificantly different from the controls. GH alone induced a
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substantial increase in body weight during the experiment, and

the final body weight was 29% higher than in controls

(P<0.001).

The gait ability score was 10 (maximum) in all animals prior

to BTX injection (Figure 1B). However, already at day 1 after

the BTX injections the gait ability of the BTX group was se-

verely affected, reaching a minimum score of 1.6±0.49 at day

5. Hereafter, the gait ability score increased gradually to

4.9±1.19 at the end of the study. There was no difference in gait

ability score between BTX and BTX+GH at any time point.

Controls and GH scored maximum point at all time points.

BTX did not influence longitudinal growth, as no differences

in femur length were found, when comparing BTX to controls

(Table 1). However, the femur length was significantly higher

in the GH and BTX+GH groups compared with controls.

GH treatment resulted in a 2-fold higher level of serum IGF-I

in the GH group (1223±758 μg/l, P<0.01) and the BTX+GH group

(1240±554 μg/l, P<0.05) after 4 weeks of treatment compared with

the control group (562±282 μg/l). BTX alone (558±174 μg/l) did

not influence serum IGF-I compared with controls.

Muscle weights and muscle cell CSA

The WW of the right m. rectus femoris was lower in BTX

(–69%, P<0.001) and BTX+GH (–59%, P<0.001), when com-

pared with controls (Figure 2A). However, the WW of the right

m. rectus femoris was 29% higher in BTX+GH (P<0.001)

compared with BTX. GH alone induced a 19% increase in

WW of the right m. rectus femoris compared with controls

(P<0.001). Mean muscle cell CSA was 73% lower in BTX and

69% lower in BTX+GH compared with controls (P<0.001)

(Figure 3B and Table 1). Muscle cell CSA was 11% higher in

BTX+GH compared with BTX, however this finding was not

significant (P=0.064). In GH alone the muscle cell CSA was

12% higher than controls (P<0.01).

The WW of the sternocleidomastoid muscle was lower in

BTX when compared with controls (–11%, P<0.01) and base-

Baseline Control BTX BTX+GH GH

No. of rats 12 12 12 12 12

Initial BW 230 230 234 232 234

(g) (8) (10) (8) (9) (9)

Final BW 249 221*** 256### 302***

(g) - (8) (4) (13) (16)

Femur length 33.0*** 34.0 33.7† 35.4***, ###, ††† 35.4***, ###

(mm) (0.71) (0.51) (0.59) (0.69) (0.58)

Serum IGF-I 562 558 1223**, ## 1240**

(μg/l) - (282) (174) (758) (554)

M. sternocleido-mastoideus (mg) 242 247 220 **, † 257### 294***

(17) (21) (15) (28) (18)

**: P<0.01 vs. control, ***: P<0.001 vs. control, ##: P<0.01 vs. BTX, ###: P<0.001 vs. BTX, †: P<0.05 vs. baseline, †††: P<0.001 vs. baseline.

Table 1. Number of rats, initial and final body weight (BW), femur length, serum IGF-I, and m. sternocleidomastoideus in rats with BTX

induced right hind limb paralysis treated with GH (5 mg/kg/d). Mean (SD).

Figure 1. Body weight and gait ability score of rats with BTX in-

duced hind limb paralysis treated with GH (5 mg/kg/d). Mean±SD.

: control, : BTX, : BTX+GH, : GH.
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line (–9%, P<0.05), and was 19% higher (P<0.001) in GH

compared with controls (Table 1).

DEXA

BMC of the right femur was lower in BTX (–15%,

P<0.001) and BTX+GH (–10%, P<0.001) compared with con-

trols, whereas no difference were found when compared to

baseline (Figure 3A). BMC was higher in BTX+GH (+6%,

P<0.01) than in BTX. In GH alone BMC was 7% higher com-

pared with controls (P<0.001).

aBMD was not only significant lower (–13%, P<0.001) in

BTX than in controls, but also significantly lower than in base-

line (–6%, P<0.001) (Figure 3B). GH did not influence aBMD

in neither BTX-injected nor in non-paralysed animals.

Biomechanics

BTX resulted in a lower maximum load of the mid-femoral

diaphysis (–12%, P<0.05), femoral neck (–17%, P<0.05), and

distal femoral metaphysis (–25%, P<0.001) compared with

controls (Table 2). No differences were found between BTX

and BTX+GH. Furthermore, the maximum load of the femoral

neck and the distal femoral metaphysis were lower in BTX and

BTX+GH than in the baseline group. GH alone did not influ-

ence maximum load at any of the tested bone sites.

μCT of trabecular bone

At the distal femoral metaphysis trabecular BV/TV (–26%,

P<0.05), Tb.Th (–16%, P<0.001), and vBMD (–22%, P<0.05)

Figure 2. Muscle mass (A) and muscle cell CSA (B) of the rectus

femoris muscle in rats with BTX induced hind limb paralysis treated

with GH (5 mg/kg/d). Mean ± SD. **: P<0.01 vs. control, ***:

P<0.001 vs. control, ###: P<0.001 vs. BTX, ††: P<0.01 vs. baseline,
†††: P<0.001 vs. baseline.

Figure 3. BMC (A) and aBMD (B) of the right femur in rats with

BTX induced hind limb paralysis treated with GH (5 mg/kg/d).

Mean±SD. ***: P<0.001 vs. control, ##: P<0.01 vs. BTX, †††: P<0.001

vs. baseline.
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were lower in BTX compared to controls (Table 3). Tb.Th was

17% lower (P<0.001) in BTX+GH when compared with con-

trols, whereas no differences in BV/TV and vBMD was found

between these two groups. Furthermore, no differences be-

tween any of the groups were found in Tb.N, Tb.Sp, and CD.

Static bone histomorphometry of cortical bone 

At the femoral mid-diaphysis the cross sectional bone area

was significantly lower in BTX (–8%, P<0.01) compared to

controls (Table 4). The cross sectional bone area of BTX+GH

did not differ from either BTX or the controls. Furthermore,

Fmax (N) Baseline Control BTX BTX+GH GH

Mid-femur 109 119 105* 112 116

(7) (9) (12) (15) (10)

Femoral neck 90 88 73*,† 67**, †† 88

(18) (8) (15) (12) (10)

Distal femoral metaphysis 719* 828 620***, † 605***, † 865

(76) (107) (113) (101) (105)

*: P<0.05 vs. control, **: P<0.01 vs. control, ***: P<0.001 vs. control, †: P<0.05 vs. baseline ††: P<0.01 vs. baseline.

Table 2. Maximum strength (Fmax) of the mid-femur, the femoral neck and the distal femoral metaphysis in rats with BTX induced right hind

limb paralysis treated with GH (5 mg/kg/d). Mean (SD).

Baseline Control BTX BTX+GH GH

BV/TV 0.157 0.189 0.139 * 0.158 0.186

(-) (0.037) (0.041) (0.044) (0.033) (0.043)

Tb.Th* 62.9 67.6 56.6 ***, ††† 55.9 ***, ††† 65.9

(μm) (4.7) (4.6) (4.6) (6.7) (4.6)

Tb.N* 3.38 3.49 3.33 3.86 3.55

(mm-1) (0.65) (0.68) (0.78) (0.62) (0.63)

Tb.Sp* 295 292 306 244 277

(μm) (7) (8) (11) (3) (6)

CD 103 101 99 135 116

(mm3) (30) (27) (37) (45) (29)

BMD 246 293 229* 258 289

(mg/cm3) (49) (49) (59) (42) (53)

*: P<0.05 vs. control, ***: P<0.001 vs. control, †††: P<0.001 vs. baseline.

Table 3. μCT data on trabecular bone from the distal femoral metaphysis in rats with BTX induced right hind limb paralysis treated with GH

(5 mg/kg/d). Mean (SD).

Baseline Control BTX BTX+GH GH

Tissue area 7.68 8.06 7.72 7.90 8.18

(mm2) (0.47) (0.50) (0.36) (0.45) (0.55)

Bone area 5.24 5.53 5.09* 5.25 5.79

(mm2) (0.30) (0.31) (0.31) (0.29) (0.43)

Marrow area 2.44 2.53 2.64 2.64 2.39

(mm2) (0.30) (0.39) (0.29) (0.37) (0.45)

*: P<0.05 vs. control.

Table 4. Static histomorphometry on cortical bone from the mid-femur in rats with BTX induced right hind limb paralysis treated with GH (5

mg/kg/d). Mean (SD).
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no differences in total area or marrow area were found between

any of the groups, although the total area of BTX tended to be

lower compared with the controls (P=0.08).

Dynamic histomorphometry of cortical bone

At the periosteal cortical bone surface BTX resulted in

lower MS/BS (–78%, P<0.001), and BFR/BS (–79%,

P<0.001) compared to controls (Figure 4A+C), whereas no

difference in MAR was found (Figure 4B). In BTX+GH,

MS/BS (–57%, P<0.001), and BFR/BS (–37%, P<0.001) were

lower compared to controls, however, GH resulted in a 1-fold

higher MS/BS (P<0.001) and a 2-fold higher BFR/BS

(P<0.001) of the paralysed animals compared to BTX alone.

In addition, GH resulted in 1-fold higher MAR (P<0.001)

compared to controls and BTX. Furthermore, GH alone in-

duced substantial higher MS/BS, MAR, and BFR/BS com-

pared with controls (Figure 4D).

Ali.S/BS was lower in BTX (–23%, P<0.01) and BTX+GH

(–21%, P<0.01) indicating an increased periosteal bone resorp-

tion in these groups during the experimental period.

No differences between the groups in MS/BS, MAR,

BFR/BS, or Ali.S/BS at the endosteal surfaces were found

(data not shown).

Discussion

The purpose of the present experiment was to study the ef-

ficacy of GH to counteract paralysis-induced loss of bone and

muscle mass. The main findings were that treatment with GH

mitigated paralysis-induced loss of periosteal bone formation

and muscle mass. No effect of GH on trabecular BV/TV or

bone strength was found.

Figure 4. Dynamic histomorphometry on periosteal cortical bone (A) MS/BS, (B) MAR, (C) BFR/BS, and (D) Ali.S/BS from the mid-femur

in rats with BTX induced hind limb paralysis treated with GH (5 mg/kg/d). Mean ± SD. **: P<0.01 vs. control ***: P<0.001 vs. control, ###:

P<0.001 vs. BTX.
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BTX substantially reduced muscle mass and muscle cell

CSA of the rectus femoris. This was accompanied by a sub-

stantial reduction of periosteal MS/BS as well as cross sec-

tional bone area of the mid-femur, indicating that the fraction

of periosteal surfaces with bone formation was decreased.

However, no change of MAR was found, suggesting that at

sites involving bone formation, the activity of the osteoblasts

was not influenced by disuse. Furthermore, the lower amount

of Ali.S/BS at the periosteal surfaces indicates that BTX in-

creased bone resorption. Thus, disuse resulted in decreased

bone formation as well in increased bone resorption at the pe-

riosteal surfaces leading to a reduced cross sectional bone area.

Finally, in line with previous studies in rodents11,12,28, disuse

resulted in loss of femoral aBMD, trabecular BV/TV, trabec-

ular thickness, and bone strength. 

It is well known that GH induces growth36. In intact rodents,

GH increases the circulating levels of IGF-I37,38, as well as pro-

duction of IGF-I locally in many tissues including bone39. GH

and IGF-I are important during longitudinal bone growth,

where these substances stimulates chondroblasts and chondro-

cytes located in the growth plate40. In the present study, disuse

did not influence longitudinal bone growth as the femur length

did not differ between control and paralysed animals. These

findings support previous studies suggesting that short term

unloading is not critical to longitudinally bone growth12,41. As

expected, GH treatment of non-paralysed animals leads to in-

creased femur length. Interestingly, the effect of GH on linear

growth was not affected by disuse, as no differences in femur

length between BTX+GH and GH alone were found. GH at-

tenuated the loss of femoral BMC of the paralysed animals. In

contrast, no differences in aBMD were found, indicating that

the increase in BMC was due to an increased bone length due

to GH administration.

GH treatment did not prevent loss of femoral trabecular

BV/TV or thinning of the trabeculae. This is consistent with a

previous study on hypophysectomised rats25, where no effect

on trabecular BV/TV was found neither when animals were

treated with a replacement dose (GH: 500 μg/kg) or a pharma-

cological dose (GH: 5 mg/kg). Similar findings were reported

in hindlimb suspended rats treated with IGF-I42. However, it

should be noted that the duration of the above mentioned stud-

ies and of the present study is relatively short, and it is not

known whether a longer treatment period with GH or IGF-I

would influence BV/TV or trabecular thickness during disuse.

In long bones, GH is also known to influence bone width

by stimulating periosteal bone formation19,24. In the present

study, GH partially prevented BTX-induced loss of MS/BS

and substantially increased MAR of the mid-femur, indicating

that GH attenuated the loss of active osteoblasts and increased

the bone forming activity of these osteoblasts to a level signif-

icantly above the controls. These findings are in accordance

with studies of intact and unloaded hypophysectomised

rats19,24,25. Nevertheless, the effect of GH on periosteal os-

teoblasts did not reduce BTX-induced loss of bone strength of

the mid-femur. However, the experimental period was only 4

weeks, and it should be noted that GH alone did not influence

the bone strength compared with controls. Thus, an extended

experimental period is needed to ascertain whether GH can

prevent loss of bone strength due to disuse. 

The mechanisms behind disuse-induced bone loss are not

fully elucidated, but the Wnt/β-catenin signalling pathway

seems to be involved43,44. The Wnt/β-catenin signalling path-

way is regulated by a number of molecules including sclerostin.

Sclerostin is secreted by the osteocytes, and is suggested to in-

hibit bone formation by inhibiting osteoblastic Wnt/β-catenin

signalling (for a review see45). The expression of the SOST

gene encoding for sclerostin have been shown to be upregulated

in tail suspended mice43,44 and in mice with sciatic neurectomy-

induced paralysis46. Furthermore, serum levels of sclerostin are

increased in humans during bed rest47. Whether GH have any

effect on the sclerostin production is not clear, however, serum

levels of sclerostin seem to be decreased in acromegalic pa-

tients (personal communication, Dr. Tomris Erbas).

GH is a potent anabolic agent known to promote skeletal

muscle cell protein synthesis and growth22, which to a large

extent is mediated by IGF-I48. In the present study, GH lead to

a two-fold increase in serum IGF-I, and increased BW (21%)

and muscle mass (m. rectus femoris and m. sternocleidomas-

toideus by 19%) of animals treated with GH alone, which is

in agreement with previous studies20,23,24,37. The final BW of

BTX-injected animals was decreased to a level significantly

lower than that of control animals, which is in accordance with

earlier studies12,28. GH treatment prevented the BTX-induced

loss in body weight, which can be ascribed to the general an-

abolic effect of GH.

Muscle atrophy involves a reduction of the diameter of the

muscle cells due to loss of mainly proteins (for review see5).

IGF-I suppress protein degradation in muscle cells5, and pro-

duction of muscle IGF-I have been reported to be downregu-

lated during unloading49,50. In the present study, GH could not

prevent, but nevertheless attenuated the loss of rectus femoris

muscle mass, which is in agreement with a previous study using

a combination of GH and IGF-I in tail suspended rats51. This

effect was accompanied by a diminished loss of muscle cell

CSA, and may be mediated by the increased serum IGF-I as

well as IGF-I produced locally in the muscle cells themselves.

However, concentration of muscle IGF-I was not measured in

the present study, but it has been demonstrated that GH admin-

istration increases skeletal muscle IGF-I mRNA production52.

BTX severely affected the gait ability of the right hind limb

of the animals and reached a minimum at day 5. However, this

did not prevent the animals from moving freely around in the

cages using the non-paralysed limbs, and they could easily ac-

cess water and food during the entire experiment. GH did not

influence the gait ability score at any time point.

The dosage of GH of 5 mg/kg/d used in the present study

was selected, as previous studies using comparable GH

dosages, have reported increased periosteal bone formation

and bone strength19,20. The peak levels of endogenous GH in

female rats reach 300-600 μg/l serum, and between peaks the

levels are 20-100 μg/l53. When rats are injected subcutaneously

with exogenous GH, a maximum peak level is reached after 2
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hours. A dosage of 2 or 4 mg of GH per kg rat, results in peak

levels of approximately 600 or 1200 μg/l serum, respectively54.

The dosage of 5 mg/kg/day, divided into two daily doses, is a

pharmacological dosage, resulting in relatively broad peaks

twice a day. 

In conclusion, the current study showed that GH mitigated

disuse-induced loss of femoral periosteal bone formation and

rectus femoris muscle mass. No effect of GH on femoral tra-

becular BV/TV or bone strength was found. 
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