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Abstract

This review focuses on animal models used to study certain aspects of "cementless" joint replacement.  Implants used in this
application are designed to become attached to the host skeleton through either bone ingrowth into porous surfaces or bone
apposition (ongrowth) onto other types of surfaces.  Biological fixation of cementless joint replacement implants relies on
intramembranous bone regeneration. We describe a framework for understanding research design in light of the type of
research questions now being asked.  In particular, species choice, implant design and placement, and experimental endpoints
are described in some detail.  We provide a summary of recent studies specifically focused on implant fixation, demonstrating
that most work is still at the morphological and biomechanical levels with little understanding at the molecular level.  We also
provide a more comprehensive listing of studies using hip and knee replacement models, demonstrating that most work is
focused on the interface, and responses of the immediately adjacent trabecular bone and the more distant cortical bone.  We
conclude by encouraging investigators to design their experiments so that there is enough power to answer a limited number
of questions as opposed to providing limited data on a broader number of issues. 
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Introduction

Joint replacement is now considered one of the most
successful surgical procedures because of reliable pain relief
and return to function1. Currently, in the U.S. alone a con-
servative estimate is that more than 400,000 total hip and
knee replacements are performed annually. In addition, a
significant number of shoulder and small joint replacements
provide pain relief and improved function in the upper
extremity and foot. A smaller number of ankle replacements
are performed each year. The basis of this success is a
considerable research effort, including a large body of work
relying on animal models2.

Here, we focus on certain aspects of “cementless" joint
replacement. These implants are designed to become
attached to the host skeleton through either bone ingrowth
into porous surfaces or bone apposition (ongrowth) onto

other types of surfaces. Sometimes, these processes are called
biological fixation or osseointegration. The term osseointe-
gration has been borrowed from dentistry3, where initially the
term referred specifically to apposition of bone to titanium
implants at the light microscopic level and implied the use of
screw-shaped, commercially pure titanium devices placed
with minimal trauma to the host bone in a two-stage surgical
procedure. Use of the term osseointegration has now taken
on a more general meaning to include fixation of implants by
bone ingrowth or apposition in the absence of acrylic bone
cement or a fibrous tissue interface.

The implants used today are designed to provide pain relief
and improved function indefinitely, but there is increasing
interest in providing biological reconstruction for injured or
damaged joints4. This is already being accomplished with
some success today through the use of osteochondral
allografts and cartilage cell transplantation for relatively small
lesions. However, for the extensive damage present in end-
stage osteoarthritis, the most common indication for replace-
ment of the hip or knee and certain other conditions including
rheumatoid arthritis and osteonecrosis of the major weight-
bearing joints, joint replacement with mechanical devices
remains the most important option.
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In addition to the work on joint replacement, there has
been extensive use of animal models in orthopedics to
investigate the use of implants for other indications, especially
fracture repair and spinal fusion5,6. In these two indications
and others, including even joint replacement, the definition
of an implant is changing from a purely mechanical device
(e.g., the femoral component of a hip replacement or a
fracture fixation plate) to a biological device (e.g., a bone
graft substitute used in conjunction with joint replacement
or spinal fusion). While the mechanical devices are meant in
many cases to endure the patient's lifetime, the biological
replacements are now being designed to be resorbed and
replaced by functioning host tissue.

Here, we describe animal models used to study some
aspects of cementless joint replacement, specifically implant
fixation and the response of the host tissue to the presence
of the implant, especially the functional adaptation of the
adjacent trabecular and cortical bone. We have not
attempted to include thorough discussions of animal models
used to address other topics relevant to joint replacement
such as particulate debris7 and prosthetic infection8,9.

Cementless fixation

Biological fixation of cementless joint replacement
implants relies on intramembranous bone regeneration,
whether the tissue level mechanism is through bone
ingrowth into a porous structure or bone ongrowth onto the
surface of the implant10-12.  This type of fixation occurs if the
implant (i) is made from a biocompatible material, (ii) has
the appropriate surface characteristics, (iii) is mechanically
stable, (iv) is in close initial contact with the host bone and
(v) the implantation site is not infected.  In addition to these
customarily recognized requirements for bone ingrowth/
ongrowth in orthopedics, in dentistry the need to minimize
trauma to the host bone is considered a key surgical variable3.
Apparently, the use of porous coatings and other surface
modifications in orthopedic implants has lessened the need
to minimize trauma to the host skeleton at the time of
surgery as well as the need to avoid immediate load-bearing.
Enough information now exists from clinical studies and
retrieved implants to indicate that cementless fixation with
orthopedic implants does occur through bone ingrowth/
ongrowth, with clinical results now often comparable to
those achieved with the use of bone cement12.

With both bone ingrowth and bone ongrowth/apposition,
the long-term fixation is dependent upon a biological
response from the host, specifically bone formation through
the intramembranous pathway10. Indeed, the early work with
osseointegration was based on studies of intramembranous
bone regeneration13. The host skeleton forms woven bone as
a normal response to the surgically induced damage created
to prepare the anatomical site for the implant. An implant
placed in this environment can then become fixed to the host
if the conditions described above are present.

Research questions and research design

Research questions addressed with animal models
include the appropriate implant surface characteristics (e.g.,
porous coating microarchitecture, surface chemistry and
surface roughness), the effects of interface motion and gaps,
the effects of adjuvant therapies used during joint recon-
struction, and the role of bone grafts, bone graft substitutes
and growth factors in enhancing implant fixation. In
addition, there has been considerable interest in the
functional adaptation of the host skeleton to the altered
mechanical environment engendered by the presence of the
implant. A number of reviews in the literature describing
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Figure 1. Two types of non-weight-bearing implants are shown.
The top panels show a press-fit implant on the left and a gap
implant on the right. The middle panels show these implants as
placed in the proximal humerus of the dog. The lower panels are
schematics showing the intimate apposition of the implant (black
circle) to the host bone on the left and the presence of an initial gap
on the right. (Adapted from DR Sumner, TMTurner, RH Pierson,
H Kienapfel, RM Urban, EJ Liebner, and JO Galante. Effects of
radiation on fixation of non-cemented porous-coated implants in a
canine model. J Bone Joint Surg [Am] 72-A:1527-1533, 1990 and
H. Kienapfel, DR Sumner, TM Turner, RM Urban, and JO
Galante. Efficacy of autograft and freeze-dried allograft to
enhance fixation of porous-coated implants in the presence of
interface gaps. J Orthop Res 10:423-433, 1992).



many of these studies are currently available10-12,14-20. In this
section, we provide a brief review of methodological issues,
including species choice, implant design and placement, and
experimental endpoints. Additional methodological issues
that we describe in some detail elsewhere19 include use of the
contralateral bone as a control, sample size, and the time
points to be examined.

Species choice

The most common species in use today include the dog
and the rabbit. Less commonly used species include the goat,
sheep, rat, mouse, pig and horse. Occasionally, primate
models are used.  Choice of the appropriate species is highly
dependent upon the nature of the research question. For
instance, if one were interested in gene expression at the
interface, then a mouse or rat model would be helpful
because of the availability of probes for these species. On the
other hand, these species have not been used to study other
issues, such as fixation in the presence of implant weight-
bearing, where larger species are used.

Implant design and placement

In vivo models relevant to the function of joint replace-
ment implants may be categorized as either non-weight-
bearing or weight bearing. By definition, the non-weight-
bearing devices are not directly loaded, are usually
implanted for short periods of study (days to weeks) and are
used to investigate implant material or the bone-implant
interface isolated from the effects of cyclic weight-bearing.
Most often, these models have been used to examine
materials, coatings or surface modifications or the effects of
treatments that may inhibit or enhance bone ingrowth.  If a
material or surface structure appears promising in a non-
weight-bearing application, the next consideration is to test
the concept under the influence of cyclic weight-bearing,
usually a segmental replacement or joint replacement model
(see below).  

Non-weight-bearing implants can be implanted so that
there is a press-fit with the host bone (i.e., initial intimate
apposition between the implant surface and bone) or with an
initial interfacial gap or defect (Fig. 1). The latter method is
a simple means to create a model of inhibited implant
fixation in which the ability of various surface treatments or
materials to restore normal fixation can be tested. These
implants can be placed with the long axis of the implant and
bone aligned ("axial" placement) or with these two axes
orthogonal ("transcortical" placement) (Fig. 2). The axial
devices may be inserted into only the distal or proximal
metaphyseal bone or through all regions of the bone,
metaphyseal and diaphyseal. Transcortical devices can be
placed in diaphyseal or metaphyseal regions, as well. Thus,
the device geometry may allow apposition to only metaphys-
eal trabecular bone or to both metaphyseal trabecular bone
and the endosteal cortical surface of the diaphysis. Our
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belief is that axial and transcortical metaphyseal implants
provide more clinically relevant information than trans-
cortical diaphyseal implants because most joint replacement
implants are placed within a trabecular bone bed (e.g., the
acetabular component in total hip replacement and the tibial
and femoral components in total knee replacement) or
within the medullary cavity (e.g., the femoral components in
total hip replacement).

A number of authors are now using bone chamber 
models 21-26.  These models have certain advantages including
the ability to perform vital microscopy and to make repeated
tissue harvests over time. They have not been used as far as we
are aware to study bulk implants, but the studies do contribute
to understanding mechanisms of bone regeneration.

Recently, controlled motion models have been developed
so that a major limitation of non-weight-bearing implants,
lack of replication of load distribution from a weight-bearing
prosthetic device to the bone, can be addressed27-29. These
models also make it possible to test specific hypotheses
about interface motion and biological fixation.

Another model system that bridges some of the
differences between non-weight-bearing and joint replace-
ment models is the use of devices that communicate with the
joint30,31.  For instance, this type of model has been used to
investigate the role of particulate debris on cementless
interfaces without the compounding effects of weight
bearing and component movement.  Controlled motion can
also be imparted to this type of model32.

Segmental replacement models, first developed in
response to the need to replace large regions of long bone
diaphyses severely injured by trauma are weight-bearing
devices relevant to total joint replacement33-35. These models
have been developed in the dog and other species such as
primates, goats or sheep.
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Figure 2. Schematic showing placement of axial and transcortical
non-weight bearing implants for investigation of bone ingrowth.
(Adapted from DR Sumner, TM Turner, and RM Urban. Animal
models of bone ingrowth and joint replacement. In: Animals
Models in Orthopedic Research, edited by YH An and RJ Friedman.
CRC Press, Boca Raton, Fla; 1999:407-425).
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A more common weight-bearing model, particularly in
recent years, has been hip replacement (Fig. 3). This has
been applied in two forms. One is a total hip replacement
with both acetabular and femoral components being inser-
ted. The other is a hip replacement hemiarthroplasty in which
only the femoral head is replaced, thereby avoiding the
potential complications of an acetabular component. The
use of any joint replacement device in an animal model allows
that device to experience the cyclic loading of ambulation
both for the prosthetic device materials as well as the bone-
implant interface. Although different surgical approaches
have been utilized for the implantation of hip replacement
components, this is a reliable model which can provide a very
successful clinical function provided proper implantation of
the device is achieved.

Variations on the bone-implant interface have also been
studied by allowing the presence of only a press-fit or,
alternatively, the development of defects in the bone adjacent

oped in the site surrounding a failed prosthetic device. The
altered bony environment includes the presence of
macrophage-laden granulomas rather than bone marrow at
the site of implantation36. Use of the primary and revision
hip replacement models is detailed below. 

Total knee replacement models have been reported,  but
much less frequently than total hip replacement models (Fig. 3).
Most of these studies have focused on the bone-implant
interface and are described in more detail below.

Experimental endpoints

Most studies rely on morphological or mechanical
endpoints. An example of a morphological endpoint is the
volume fraction of bone ingrowth into a porous coating37.
For implants lacking a porous coating, the researchers usually
develop an index of bone apposition. Other morphological
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Figure 3. In vivo radiographs of three canine hip replacement models and one canine knee replacement model used by the authors. (a) a
total hip replacement in which a cemented acetabular component is matched with a cementless femoral component, (b) a total hip
replacement in which both the acetabular and femoral components are cementless, (c) a hemiarthroplasty in which only a femoral component
is used with the head matched to the size of the intact acetabulum, and (d) a cementless knee replacement model with cementless femoral
and tibial components.  (From DR Sumner, TM Turner, and RM Urban. Animal models of bone ingrowth and joint replacement. In:
Animals Models in Orthopedic Research, edited by YH An and RJ Friedman. CRC Press, Boca Raton, Fla; 1999:407-425).

(a) (b) (c) (d)

ENDPOINT

Molecular/Gene
Question Expression Morphology Mechanical

surface design (71-91) (77,78,80,81,83,84,91-94)
(porous coating type, 
surface roughness, 
surface composition)

growth factors, 
bone grafts, (95-97) (21-23,96-126) (98,100,105,106,109,122,123)
bone graft substitutes

host factors (83,127-130) (83)

Table 1. Selected studies involving non-weight-bearing models published since 1998.

to the implant. Thus, hip arthro-
plasties may be implanted as a
press-fit device with the compo-
nents being impacted into an
undersized prepared cavity or as
a gap model in which control
defects are developed or created
adjacent to the prosthetic bone
interface. These defect models
have been used to test various
bone grafts and bone graft
substitutes.

A further modification of the
weight-bearing prosthetic joint
model is the development of
revision models that replicate
the bony environment devel-
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Summary

The choice of model depends upon the question being
asked.  For instance, if one is interested in testing whether a
new surface design will support bone ingrowth/apposition or
fixation, the simplest approach is to use a non-weight-
bearing, press-fit model.  In contrast, if one is questioning
whether or not a new surface design, growth factor or bone
graft substitute will enhance implant fixation, then the most
efficient course of action would be to use models in which
fixation is inhibited, perhaps progressing from simple to
complex models (e.g., a non-weight-bearing gap model to a
revision total hip replacement model).

Listing of non-weight-bearing animal models used
to examine fixation only

Table 1 provides a sampling of studies using in vivo models
reported since 1998 that examine issues related to implant
fixation. The survey is certainly not exhaustive, but is
representative of the type of work now being performed.
Most of the studies derive their motivation from orthopedics,
but some are craniofacial in nature. The studies in this table
used non-weight-bearing models. Studies involving total joint
replacement models are described later in this review. We
have organized the studies according to the type of question
being asked and the type of endpoint used in the experiment.
It is obvious from Table 1 that there is considerable interest
in the design of the implant surface and the use of growth
factors, bone grafts and bone graft substitutes to enhance
fixation. There have been a few studies examining host
factors such as the effect of estrogen depletion on implant
fixation. Endpoints used by most investigators can be broadly
classified as morphological. There is very little work to date
on the molecular biology of implant fixation.  

Listing of studies using hip replacement models

Table 2 summarizes how total hip replacement models
have been used. This table provides a comprehensive
summary and is not restricted to the last two years because
the total number of reports using these types of models is not
nearly as great as the number for the non-weight-bearing
models. 

With the hip replacement models, most of the attention
has been on morphological and biomechanical responses
with an emphasis on one or more of three primary regions:
(i) the interface, (ii) the adjacent tissue (usually medullary
contents or trabecular bone) or (iii) the host cortical bone.
While this classification scheme works for most studies, in
some the focus has been elsewhere, such as the articular
cartilage after hemiarthroplasty44-47, cement restrictors48, and
embolism49,50. A few studies have focused on biomaterial
performance with little or no attention paid to the biological
response44-47,51-55.  

Models of knee replacement

Knee models are much less common and it is not
necessary to summarize the studies in tabular format.  One
of the early studies used a knee model to characterize the
mechanical properties of fibrous tissue at the bone cement-
bone interface56. Later studies used these models to investi-
gate various interface phenomena, including the potential to
establish bone ingrowth fixation57-60. 

More recently, knee models have been used to investigate
the role of implant design on osseointegration or  mecha-
nical stability61-64, bone grafting65, wear of articular carti-
lage66, embolism67, hemorrhage control68, wear debris69, and
infection70.
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ENDPOINT

Biomaterial
Question Morphology Mechanical Performance

Interface (31,36,41,51,54 (134,136,149,157,164, (44-47,51,52-55)
131-193) 165,169,172,174,

183,185,194-197)

Trabecular bone (36,41,132,
144-147,150,151,162, (199)

166,171,174,198)

(36,41,51,137,139,141, (165,170,172,173,
Cortical Bone 142,144,146,148,150, 196,199,205,206,

165,168,170-173,183, 208-210)
191,198,200-207)

Table 2. List of in vivo hip replacement models, sorted according to type of question and type of
endpoint. In addition, the last part of the table lists models in which the primary endpoint was
performance of the biomaterial.

observations include descriptions
of the soft tissue at the interface38

and bone tissue kinetics39, and it is
likely that techniques to better
understand gene expression (such as
in situ hybridization and immuno-
histochemistry) will be used in the
future. In addition, morphological
measurements to describe the
amount and architecture of bone
that forms in the vicinity of the
implant40 or of the surrounding
cortical bone41 are also used.
Typical mechanical endpoints
include the strength of fixation of
the implant to the host bone42 or
the stability of the implant43. The
former mechanical test is often used
in non - weight - bearing models,
while the latter is used in joint
replacement models.
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Conclusion

It should be clear that there is no single model to be
recommended because model choice depends upon the
research question. In general, our view is that in designing an
experiment it is more important to answer a limited number
of questions than to have some information about many
questions with no definitive answer. Practically, this usually
means limiting the number of time points studied or the
number of materials investigated so that adequate sample
sizes can be used.
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