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tion6,7 of myoblasts during development and evidence sug-
gests it may also impair satellite cell function in differentiat-
ed adult muscle undergoing regeneration/growth8.
Myostatin mRNA expression appears to be sensitive to
mechanical load and other hypertrophy or atrophy stimuli.
Its expression increases during multiple models of muscle
atrophy9-14 and, in fact, the magnitude of myostatin mRNA
elevation is significantly related to the magnitude of type II
myofiber atrophy consequent to disuse12. On the other hand,
long-term resistance training15,16, as well as a single bout of
resistance loading17,18 markedly inhibit myostatin mRNA
expression. While a physiologic consequence of altering
myostatin mRNA in adult muscle has not been clearly
demonstrated, the findings have sparked numerous efforts
to suppress or block myostatin as a treatment for muscles
suffering atrophy due to disuse, aging, or primary muscle
myopathy19-22. It is abundantly clear that myostatin plays a
dominant, negative role during mammalian muscle develop-
ment but its role and importance in normal, healthy adult
muscle remains poorly understood.

In this session, the speaker will overview some of the key
metabolic and molecular processes regulating muscle size in
adult humans with a focus on mechanisms driving skeletal
muscle protein synthesis and muscle satellite cell recruitment.
In the context of the latter, the state of the current literature
on myostatin will be discussed including a recent application
of K-means cluster analysis by the speaker’s laboratory23.

Learning objectives 

The information presented in this seminar should enable
you to better: (1) Understand the key metabolic and molec-
ular processes regulating muscle size in humans; (2)
Understand the biological actions of myostatin in skeletal
muscle; (3) Appreciate the remarkable effects of myostatin
inhibition in animal models; and (4) Compare and contrast
the current evidence regarding the influence of myostatin in
developing vs. adult muscle.
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Significant advances over the past few years have led to an
improved understanding of the cellular and molecular
processes regulating muscle mass and myofiber size. Much
like bone, skeletal muscle is a highly plastic tissue exquisitely
responsive to environmental cues including mechanical load,
endocrine factors, neural activity, and autocrine/paracrine
factors in the muscle microenvironment. As described by Dr.
Esser, mechanical overload drives growth signaling in skele-
tal muscle. Conversely, a reduction in the nominal daily load-
ing pattern or specific alterations in the muscle microenvi-
ronment can activate mechanisms leading to skeletal muscle
atrophy as described by Dr. Kandarian. Many of the findings
from animal model systems regarding muscle mass regulation
have now been translated to adult humans. Through studies
of muscle growth or regeneration, it has become increasingly
apparent that key events driving developmental myogenesis
recapitulate in adult myofibers in response to injury or
increased mechanical load, and that successful myogenesis is
dependent upon a complex array of co-ordinated activities
regulating both net muscle protein synthesis and muscle stem
(satellite) cell recruitment. 

Autocrine/paracrine as well as endocrine factors (e.g.,
IGF-I) are important modulators of these processes.
Myostatin, a member of the transforming growth factor ‚
superfamily, is perhaps the single most powerful negative
regulator of developmental myogenesis as demonstrated by
marked muscle hypertrophy in homozygous mutant mice1,
cattle2, and a single known human case3. This potent peptide
"anti-growth" factor inhibits proliferation4,5 and differentia-
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