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In vitro effects of dynamic strain on the proliferative and
metabolic activity of human osteoblasts
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Abstract

Aim of the study : It has been well shown by human and animal studies that mechanical load is an important regulator of
skeletal mass and architecture. However, cellular reactions which adapt bone tissue to the mechanical environment are not
definitively determined. For this purpose we studied the cell activity of human bone derived cell cultures after mechanical
stimulation by cyclic, uniaxial strain at a magnitude occurring in normal loaded bone tissue. Materials and Methods : Human
osteoblasts were isolated from cancellous bone biopsies of 5 different donors. Cell seeding was made in DMEM in a density
of 10.000 cells/cm? on deformable culture dishes for three days prior to initiating cell stretching at 1000 ustrain, 1Hz for 1800
cycles for two subsequent days with an especially developed cell stretching device. 48h after the second stimulation cells were
harvested and cell number was determined with a Coulter Counter. Cell bound alkaline phosphatase activity was analyzed in
cell lysates by a colorimetric assay, osteocalcin and CICP (procollagen I propeptide) production were analyzed in cell
supernatants with ELISAs. Three parallel cultures were tested. Statistics: Wilcoxon. Results: In all experiments mechanical
stimulation resulted in a significant increase in cell number (10-48%) and CICP release (7-49%). Simultaneously a significant
decrease in alkaline phosphatase activity (9-25%) and osteocalcin release (5-32%) could be observed. Conclusions : The results
demonstrate that cyclic strain at physiologic magnitude leads to an increase of early osteoblast activities related to matrix
production while those activities which are characteristic for the differentiated osteoblast and relevant for matrix
mineralization are decreased. These new findings confirm in vivo observations about the importance of dynamic strain for
bone formation during fracture healing and bone remodeling and could contribute to the optimization of fracture healing.
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Introduction Structural adaptations provided by modeling and
remodeling activities seem to depend on threshold ranges of
mechanical usage or corresponding strains or stresses. Frost
(1992) has described a window of mechanical usage which is
defined by an upper boundary (1500 pstrain), called the
minimum effective strain above which bone will undergo
modeling and change its structure to reduce the local strains
and a lower threshold (50 pstrain) below which bone tissue
will be resorbed until the local strains are increased’. These
specifications are based on strain data of Lanyon et al.
(1975) who recorded strains of 400 pstrain during normal
walking by fixing rosette strain-gauges to human tibial
shafts'. During strenuous activities strains may be of the
order of more than 3000 pstrain''.

Previous cell culture experiments clearly demonstrated
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The ability of bone tissue to functionally adapt to the
mechanical environment depends on the property of bone
cells to model and remodel bone architecture in response to
mechanical strain. The responsiveness of bone derived cells
to mechanical strain has been confirmed by several in vitro
investigations!®. In summary the results indicated that
mechanical stimuli elicit the proliferation of bone derived
cells and it is assumed that under suitable mechanical
conditions matrix production by increased number of bone
cells and/or matrix synthesis leads to an increased bone mass
in response to mechanical loading.
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We therefore expect the optimal strain magnitude for cell
growth stimulation at even lower levels.

In the present study we investigated whether bone
formation by human osteoblasts in vitro is stimulated at low
strain levels. For this purpose we measured the effect on cell
proliferation by cell counting and on matrix formation by the
assessment of collagen type I carboxyterminal propeptide.
Matrix maturation was determined by the measurement of
alkaline phosphatase activity and mineralisation was
assessed by the measurement of osteocalcin release.

Methods

The cell substrate consisted of rectangular, optically clear,
elastic culture dishes’. For the application of strains at
physiological levels monolayer cell cultures on silicone
dishes were subjected to cyclic, homogenous stretching by 4-
point bending driven in a sinusoidal strain cycle pattern by
computer controlled linear actuators'

Osteoblast cultures derived from bone samples were taken
from the tibia or femur of healthy patients between 28 and
81 years of age undergoing surgery for fracture repair. Bone
cell cultures were established as described by Neidlinger-
Wilke et al’.

Cells were seeded at a density of 10,000 cells/cm? in 5 ml
DMEM supplemented with 10% FCS, penicillin (100 U/ml)
and 1% l-glutamine (all compounds from Biochrom, Berlin,
Germany) and maintained for 3 days until subconfluent cell
density (65-75% confluence) was reached. Then FCS
concentration was reduced to 2%. 24 h (= to) and 48 h after
serum reduction cyclic strain was applied. Unstimulated
cultures were used as controls. 48 h after the last stimulation
cycle the assessment of biochemical marker was performed.
We used respectively 6 culture wells (3 stimulated and 3
controls) for the analysis of the various cell activities.

Proliferation was determined with a Coulter Counter 48 h
after the last stimulation cycle. Cell bound alkaline
phosphatase (AP) activity was analyzed by a colorimetric
assay in cell lysates prepared 48 h after the last cell
stimulation cycle. Osteocalcin (OC) concentration was
determined in the cell culture supernatants with an ELISA.
Collagen type I propeptide (CICP) concentration was
determined in cell culture supernatants with an ELISA. The
measured AP activity, OC and CICP concentrations were
normalized to the cell number of the same culture wells.

Results

The cellular responses were altered in five different cell
populations after the application of low level dynamic strain
at a frequency of 1 Hz (fig. 1). A significant increase (10-
48%) of cell proliferation was found in all cell populations
isolated from cancellous bone after strain application at
1000 pstrain compared to unstimulated control cultures
(One way-ANOVA, p < 0.0001). The same mechanical
conditions led to a significant increase of CICP concen-
tration in cell culture supernatants of stretched cell cultures
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(7-49%) (ANOVA, p < 0.0001). In contrast, AP activity (9-
25%) and osteocalcin concentration (5-32%) were both
significantly reduced (ANOVA: OC: p < 0.017; AP: p <
0.0001).

Discussion

In our study, cyclic strain at a physiologic magnitude of
1000 pstrain led to an increase of proliferation and early
osteoblast activities related to matrix production (CICP). In
contrast, activities that are characteristic for the
differentiated osteoblast (AP activity) and relevant for
matrix mineralization (OC release) were decreased. This
phenomenon has also been observed for cell growth, OC
release and AP activity by Stanford et al”®. in the osteoblast-
like cell line MC3T3 after stimulation with cyclic
stretching'®. Concurrent with the increased proliferation the
release of CICP was stimulated. An increase of collagen type
I has also been observed by Jones et al’. after stretching
bovine osteoblasts with low strains.

Osteoblasts are located on the surface of cancellous and
cortical bone on the yet unmineralized cell matrix.
Therefore, the deformation of the cell substrate to which
these cells adhere would be a proper signal for the
stimulation of these cells. This situation was simulated in our
experiment by culturing osteoblasts as a monolayer on
flexible cell substrate surfaces. The 4-point bending device
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Figure 1. Effects of mechanical strain on cell proliferation, CICP
release, alkaline phosphatase activity and osteocalcin synthesis of
five different osteoblast populations. Bars represent the mean
percentage of change of all five osteoblast populations with respect
to the control (=0). The error bars represent the standard error of
the mean (SEM) of five osteoblast populations.



produced homogenous, predominantly uniaxial strains of
the cell culture substrate such that every cell was subjected
to the same deformation. However, we cannot exclude that
shear stresses were produced by hydrostatic pressure from
the weight of the medium and the inherent forces required
to move the medium up and down during mechanical
cycling. We cannot exclude the contribution of fluid flow in
our system. However, other investigators found effects of
mechanical strain on osteoblasts in systems where there is no
participation of fluid flow®!. Further it could be shown that
shear stresses that occur at 0.25 Hz and 1.2 % axial strain
have been shown to be less than 0.2 x 10° N/cm?>", Effects of
fluid flow on cells have only been observed at higher shear
stresses'®!7.

A large variability even in control cultures was observed
with regard to absolute values as well as differences between
stimulated and control cultures. This phenomenon has
already been observed previously and may be associated with
individual differences between donor patients”!®. Even
sequential outgrowths from the same explants of the same
patients were shown to react with distinct responsiveness to
mechanical strain'®. It is therefore striking in our
experiments that the same trends of increasing early
osteoblast activities (proliferation and CICP) and decreasing
late developmental functions (AP and OC) were observed
for all osteoblast populations.

Proliferation, AP, OC and CICP were determined
because these markers represent the different stages of
osteoblast development. Osteoblasts show a strongly
regulated, sequential gene expression pattern which consists
of a reciprocal and functionally coupled relationship
between proliferation and differentiation’. At the transition
between proliferation and differentiation, the down
regulation of genes for cell proliferation and collagen
synthesis coincides with the onset of gene expression for
matrix maturation which gives rise to mineralization. Based
on the findings of the current study it can be assumed that
mechanical strain intensifies the proliferation phase by a
prolongation of cell growth stage or by an inhibition of cell
differentiation. Similar effects have been shown for TGF-
that was added to osteoblast cultures during the
proliferation stage”. TGF-B has also been shown to be
induced in osteoblasts by mechanical signals®? and is
therefore suggested to be a regulator of mechanically
induced cell reactions. These findings fit well into the
concept of bone modeling and remodeling. The
reinforcement of the proliferation phase would lead to an
increased matrix production that is necessary to functionally
adapt bone tissue to mechanical stress. Matrix
mineralization, on the other hand, is reduced by mechanical
loading and does not recommence until the local strain
magnitude is decreased.

Our experiments showed a consistent effect of physiologic
mechanical strain on the cell activity of five different human
osteoblast populations. This suggests that we have a reliable
system to investigate strain influences on bone cell activity.
The data presented in this paper show slight differences

D. Kaspar et al.: Strain effects on osteoblastic activity

between osteoblast activities of cells stimulated by cyclic
mechanical strain and unstimulated cells. Although modest,
these in vitro effects confirm in vivo observations about
mechanically influenced bone tissue adaptation.
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