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Editorial Hylonome

Anabolic Agents and Osteoporosis: Quo Vadis?

W.S.S. Jee

Division of Radiobiology, School of Medicine, University of Utah, Salt Lake City, USA

Abstract

There are preclinical studies and limited clinical experiences with bone and muscle anabolic agents (e.g., parathyroid
hormone (PTH), sodium fluoride (NaF), prostaglandins (PGs), growth hormones (GH), etc.) that show they have significant
advantages over antiremodeling agents in patients with established osteoporosis1-5. The strength of anabolic therapy is as
follows: it rapidly reverses bone loss in laboratory animal models and humans, the quality of bone with some agents is believed
to be normal, an increase in bone strength in animal models, and a reduction of spinal fracture rate with PTH. The weaknesses
of this therapy are high cost, poor understanding of mechanism of action, parenteral mode of administration, rapid bone loss
following termination of treatment, abnormal quality of bone, lack of tissue specificity, and undesirable side effects. Both
animal and clinical studies have shown one can preserve the bone gain following termination of treatment with antiremodeling
agents or exercise based on the lose, restore and maintain (LRM) concept6. However, the more important efficacy issues which
need to be addressed are tissue specificity and reduction of undesirable side effects. This report will address these issues with
the suggestions that the potentiation of the mechanical loading osteogenic response by anabolic agents can overcome the
disadvantages which accompany the use of anabolic agents. In addition, the possible role of nitric oxide (NO), an agent
required for mechanical loading-induced bone formation, will be discussed. 
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Beneficial effects of the interaction of mechani-
cal loading and anabolic agent

Since both mechanical loading and anabolic agents
activate modeling-dependent bone gain, they have a parallel
pattern of modeling response and many common
biochemical events and pathways. Among these are:
increased intracellular calcium, intracellular cAMP,
prostaglandin (PG) and nitric oxide (NO) accumulation,
gene expressions of IGF-1, collagen and osteocalcin and
connexin-43, etc.7-14. πt was conceivable that they might act
together to increase bone mass and strength, which proved
to be true. The beneficial effects of combining mechanical
loading and anabolic agents were first suggested by Lent
Johnson15 as early as 1965 (Table 1). He described an early
anabolic response of NaF in bone sites under mechanical
usage in man. This observation laid dormant until Baylink
and colleagues4,16-18  reported in a series of articles in the mid
80s that NaF increases bone mass in areas of high

mechanical stress, especially in the lower extremities, and
noted the lack of 99mTc diphosphonate uptake in the poorly
loaded upper extremities in man. In addition, Riggs et al.19

also reported that bone mineral density decreases slightly in
the radial shaft while sites like the lumbar spine, and femoral
neck and trochanter increased with NaF in man.

The above findings had few followers, mainly because
there were few investigators interested in both bone anabolic
agents and skeletal adaptation with mechanical usage (i.e.,
exercise) before 1990. The animal data came in the late 80s
when we repeatedly found in our studies with PGE2 in rats,
that there was a non-uniform anabolic response in skeletal
sites. The amount of bone gain with PGE2 was greater in
heavily loaded sites (i.e., the distal portion of long bones
more than in the spine). Furthermore, our 99mTc diphos-
phonate uptake studies in dogs showed poor uptake in the
skull and heavy uptake in the extremities20-23. 

In addition, Yeh et al.24 reported growth hormone
potentiated the effect of treadmill exercise on tibial cortical
bone formation; Gasser5 showed the poorly loaded tail
vertebrae were less responsive to PTH than were other sites
in the rat, and Cann25 reported trabecular bone density was
higher in the area of lumbar vertebrae under the highest
compressive loading force.

Recently, both Chow et al.26 and Tam27 have shown nitric
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oxide donors and a new peptide, respectively, potentiated
the stimulatory effect of mechanical loading on bone
formation. However, these agents were found to be
necessary, but not sufficient, for induction of bone formation
alone.

The most convincing data in support of the beneficial
effects of combining mechanical loading and bone anabolic
agents were the dose response studies of Tang et al. and
Chow et al. with PGE2 and PTH in rats. Tang et al.28 showed
that when lmg PGE2/kg/d was combined with a minimum
effective load by 4 point bending of the mid tibial shaft, 
a synergistic effect on bone formation was observed at 
the periosteal surface, and an additive effect at the
endocortical surface. Chow et al.29 found a synergistic effect
of PTH and loading in increasing bone mass. They found
mechanical stimulation of the eight caudal vertebra induced
an anabolic response that was augmented by a single
injection of PTH before loading. Furthermore, Mosekilde et
al.30 showed an additive effect of voluntary exercise and

growth hormone treatment on bone and bone formation,
respectively (Table 1).

The beneficial effects of combining an anabolic agent like
PGE2 and loading might be explained by (1) PGE2 lowering
the modeling and remodeling threshold (i.e., lowering the
modeling setpoint); and (2) the effects of local factors
induced by either PGE2 or higher peak strain. One, it has
been suggested that anabolic agents can lower the modeling
threshold. If this is true, the agent would make a smaller
strain (i.e., less mechanical usage) than normal turn
modeling drifts on, and decrease remodeling to conserve
bone5,31,32. Two, it is known that exogenous PGE2 induces
bone cells to produce insulin-like growth factor 1 (IGF-1),
transforming growth factor ‚ (TGF‚) and IGF binding
protein33-35. Similarly, loading also enhances the production
of local factors like IGF-1, TGF‚, endogenous PGE2 and
prostaglandin I2

36-40. If these local factors enhance the
function of osteoblasts and accelerate differentiation of
osteoprogenitor cells, synergism or addition will result.

W.S.S. Jee: Mechanical loading and anabolic agents interactions

Author Agent Species Evidence

1. Johnson15 NaF man earlier response of NaF in areas under mechanical usage
2. Schulz, et al.16 NaF man lack of 99mTc diphosphonate uptake in upper extremity from 

NaF; response to NaF in the region of lower appendicular 
skeleton rich in trabecular bone

3. Schulz, et al.17 NaF man changes included periosteal and endosteal bone formation as 
well as trabecular thickening, localized in areas of high 
mechanical stress

4. Riggs, et al.19 NaF man BMD decrease by 4% in radial shaft, compared to 35%, 12%,
and 10% increases in lumbar spine, femoral neck, and femoral
trochanter

5. Resch, et al.18 NaF man increased trabecular bone density on peripheral skeletal site
6. Ke, et al.21 PGE2 rat The amount of bone formed tibial shaft>distal tibial 

metaphysis>distal femoral metaphysis>proximal tibial 
metaphysis>lumbar vertebral body

7. Li,  et al.20 PGE2 rat more endocortical woven bone proliferation occurred in 
treated ovariectomized and sham than immobilized rats

8. Jee, et al.23 PGE2 dog skull bones lacked anabolic response; more stimulated bone 
formation occurred in distal long bones

9. Yeh, et al.24 GH rat GH potentiates the effect of treadmill exercise on tibial 
cortical bone formation

10. Tang, et al.28 PGE2 rat PGE2 and loading had an additive effect on endocortical bone
formation and a synergistic effect on periosteal bone formation

11. Cann, et al.25 PTH man highest trabecular bone density in area of LI and L2 under 
highest compressive loading force

12. Gasser5 PTH rat unloaded tail vertebral bodies responded less to PTH
13. Chow, et al.29 PTH rat PTH potentiates mechanically-induced bone formation in 

caudal vertebrae
14. Tam, et al.27 OSA-117A     rat OSA-117A increased BMC, BMD and strength when 

subjected to exercise
15. Mosekilde, et al.30 GH rat additive effect of voluntary exercise on bone strength
16. Jamel, et al.44 nitrates man more increase in knee-BMD than hip-BMD
17. Chow, et al.26 NO rat potentiates the stimulatory effect of mechanical loading on 

bone formation

Table 1. Amplification of mechanical loading-induced bone formation with anabolic agents.
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Therapeutic implications

The fact that mechanical loading and anabolic agents are
additive in bone gain has more value than simply being an
academic exercise. This fact strikes at the heart of
therapeutic measures for employing anabolic agents to add
bone mass. 

A better understanding of the interactive effects of
mechanical loading and bone anabolic agents is likely to
have an important impact on the management of
osteoporosis in the near future. First of all, the interaction of
proper exercise and anabolic agents can improve the latter
therapeutic window (i.e., lower dose requirement, reduce
side effects, etc.). Also, the interaction can target the
anabolic response to sites at risk with proper exercise (i.e.,
femoral neck and wrist). Finally, the elucidation of
mechanical loading/anabolic activated signaling can lead to
the discovery of new bone forming agents.

A role for nitric oxide?

There is a general agreement that PGs are necessary in
the induction of bone formation by mechanical stimuli7-10.
More recently, it has been shown that nitric oxide (NO)
production is also required11,12. In vitro, low concentration of
NO has been reported to promote the proliferation of
osteoblast-like cells and modulate osteoblast function41. In
vivo studies in animal models showed NO synthase inhibitors
reduced bone formation rate in the rat tibial epiphysis and
the treatment with NO donor nitroglycerin protected rats
from ovariectomy - and glucocorticoid - induced bone loss11,12,42,43.
More exciting are the studies by Chow et al.25 and Jamel et
al. showed exogenous NO potentiates the stimulatory effect
of mechanical loading on bone formation, but lacks effect on
unloaded vertebrae, suggesting NO alone is necessary, but
not sufficient, for induction of bone formation. While Jamel
et al.44 found intermittent use of nitrates increases bone
mineral density in both the hip and knee, the knee more than
the hip.

These studies are encouraging, but more studies are
needed because current available NO donors are relatively
non-specific, and development of more selective agents that
could be targeted to the skeleton, or better yet, to bones at
risk by combining the NO with mechanical loading is
needed. Possibly such studies can elevate NO to a role in the
treatment of osteoporosis.

Summary

The major disadvantages of bone and muscle anabolic
agents are their lack of specificity to bones at risk and their
undesirable side effects. These can be overcome by allowing
the anabolic agents to potentiate the stimulatory effect of
mechanical loading on bone formation. The fact that
mechanical loading and anabolic agents arc additive in bone
gain can improve the agents’ therapeutic window and thus
lower dose requirements and reduce side effects. The

interaction can target the anabolic response to sites at risk
with proper exercise. Also, the elucidation of mechanical
loading/anabolic activated signaling may lead to the
discovery of new bone forming agents. In addition,
combining nitric oxide with mechanical loading may lead to
another approach to the treatment of osteoporosis.
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