MR imaging and early cartilage degeneration and strategies for monitoring regeneration

S. Majumdar, X. Li, G. Blumenkrantz, K. Saldanha, C.B. Ma, H. Kim, J. Lozano, T. Link

Musculoskeletal and Quantitative Imaging Research (MQIR), University of California, San Francisco, CA, USA

Keywords: Cartilage Imaging, T_1^*, Bone Marrow Edema, Labeled Stem-cell, Cartilage Regeneration

Introduction

Interactions between all the major joint tissues, including the articular cartilage, synovium, bone marrow, subchondral bone, trabecular bone and muscle, have been implicated in osteoarthritis (OA)\(^1\). Magnetic resonance (MR) images have been used to quantify the cartilage morphology, volume and thickness\(^2\) and focal defects\(^3\), and may reflect changes in biochemical composition of articular cartilage\(^4-6\). Cartilage loss in OA is preceded by damage to the collagen-proteoglycan matrix and elevation of cartilage water content. These changes are associated with changes in cartilage relaxation times T_2 and T_1^*\(^7\), as well as in the uptake of contrast agents such as Gd-DTPA in the cartilage matrix (dGEMRIC)\(^4\). Furthermore, injury and OA-related changes in bone marrow manifested by an increase in the signal intensity in bone marrow on fat-saturated T_2-weighted images (bone marrow edema, BME) have been associated with severity and progression of OA\(^8\). Such marrow changes are also associated with acute injuries such as anterior cruciate ligament injuries\(^9\) that sometimes progress to OA and joint degeneration. The purpose of this paper is to review the interrelationships of T_2, T_1^*, cartilage volume and BME in patients with OA versus those with acute knee injury, and markers of early cartilage degeneration. Stem cell based regeneration strategies are being proposed for cartilage repair. The ability to monitor stem cell therapies *in vivo* is rapidly becoming a significant consideration. Recently, it has been shown that stem cells can be labeled with super paramagnetic iron oxide (SPIO) particles and detected using MRI\(^10\). The SPIO contrast agent is metabolized by the cell, increasing the cell’s magnetic susceptibility. As negative contrast agents, labeled cell populations appear as hypo-intense regions, making them distinguishable on MR images. Using these labeled cells for tracking cartilage regeneration would be a potential tool for understanding the regenerative mechanisms.

Methods

In controls and subjects with OA and ACL injury studies relating cartilage volume, thickness or degeneration to relaxation time T_2, T_1^* and bone marrow edema changes were conducted. High-resolution, fat-suppressed, sagittal images were acquired for assessing cartilage structure, using a 3-D spoiled gradient echo (SPGR) sequence. The cartilage was segmented using a spline-based, semi-automatic technique and was defined in four distinct regions: medial and lateral tibia, and medial and lateral femur. Total cartilage volume and average thickness were calculated for each region. Sagittal images were acquired for measuring T_2 relaxation time, using a dual echo spin echo sequence. A map of T_2 values was calculated. Using a T_1^* relaxation time mapping technique T_1^* maps were reconstructed. In patients with OA and with ACL (anterior cruciate ligament) tears, who showed BME T_1^*-weighted and fat-saturated T_2-weighted fast spin-echo images were acquired. Point RESovled Spectroscopy (PRESS) volume selection was used to acquire spectroscopic fat/water quantitative data in the edema. BME was semi-automatically segmented using a threshold method based on T_2-weighted images and volume of BME was calculated.

Human mesenchymal stem cells (hMSCs) obtained from the VA Medical Center (San Francisco, CA) were labeled using Feridex IV (Fe) (Berlex Laboratories, Wayne, NJ). Protamine Sulfate (Pro) (APP, Schaumberg, Illinois) was used as a transfection agent. Cells were labeled using the Fe-Pro complex as described in Arbab et al.\(^11\). Following labeling, a Trypan Blue Assay was performed to assess cell viability. For *in vitro* imaging, cells were placed in tubes (10^5-10^6 cells/mL) containing Ficoll (Amersham Biosciences,
Piscataway, NJ), to maintain osmolarity. Tubes were placed in a water-containing plastic container and imaged at room temperature (20°C). Imaging was done on a 3T MR scanner (GE Medical Systems, Waukesha, Wisconsin). Spin-echo sequence was used to determine T1 (T=12ms, TR increasing from 60-1000ms) and T2 (TR=4000ms, TE increasing from 12-48ms) relaxation times. A gradient-echo (GRE) sequence was used to measure T2* relaxation times using α=90° flip angle, TR = 34ms, and TE increasing from 4-20ms. Dedicated fitting software was used to quantify relaxation times. For ex vivo imaging, two osteochondral defects (4mm diameter, 4mm height) were created in the trochlea of the rabbit distal femur. Gelfoam Size 100 (Pharmacia and Upjohn, Kalamazoo, Michigan) cut to the size of the defect was used as a scaffold to load the labeled hMSCs. The two defects were used as follows: (1) labeled cells on Gelfoam (3x10⁶ cells/mL); (2) empty Gelfoam. The excised knee was imaged using a T2*-weighted 3-D GRE sequence.

Results

The studies revealed that higher medial T2 results in greater loss of medial cartilage volume at twelve months. Specifically, the correlation between baseline medial femoral T2 and change in medial femoral cartilage volume was r=-0.38 (p<0.05). Figure 1 shows a map of T1. A significant correlation was found between average T1 and T2 values within the cartilage, with a correlation coefficient R²=0.69 and p=0.017. The increase of average T1 in cartilage from the controls to patients was 19.1% (43.90 ms for controls and 52.28 ms for patients), while the increase was 9.6% for the average T2 (34.94 ms for controls and 38.31 ms for patients). The difference in average T1 in cartilage between controls and patients was significant (p=0.003) while it was not significant for average T2 (p=0.202). Patients with similar average T2 may have different T1, or vice versa.

The average T1 values in BME-overlying cartilage were significantly higher than that in surrounding cartilage (51.8±10.8
S. Majumdar et al.: MR of cartilage

384

Figure 3. Gradient echo image TE=4 ms: (i) unlabeled MSCs; 10⁶ cells/mL (ii) MSCs labeled with Fe-Pro; 10⁶ cells/mL.

Figure 4. a: Osteochondral defects simulated in trochlea: Top: empty defect, bottom is filled with gelfoam. b: Gradient echo image, light arrow showing the empty defect filled with water, black arrow showing the defect with gelfoam + labeled cells as a loss of signal.

ms vs. 43.0±8.3 ms, P=0.032) in the ten patients, as one example shown in Figure 2(a). Patients with ACL tears tended to have a higher increase percentage than patients with OA, but it was not significant (6.31%±11.40% vs. 29.15%±20.75%, P=0.06). Volume of BME correlated significantly with volume of elevated water based on 3-D-MRSI (R=84.4%, P=0.004) but not with volume of elevated unsaturated lipids. Spatially elevated water correlated with BME while elevated unsaturated lipids generally were most significant in the peripheral regions of the BME, Figure 2(e). None of the BME parameters (volume, MRSI-based water and unsatlip volume) were correlated with increase percentage of T1 values.

The results of the in vitro experiments indicate efficient cellular uptake of the Fe-Pro complex, and resulting MR signal intensity loss (Figure 3). In addition, labeling did not affect cell viability. While 10⁶ cells/mL results in a strong signal loss, particularly in T₂* measurements, loss of SI of 10⁵ cells/mL can also be distinguished relative to unlabeled cells (not shown). In the rabbit model, cells labeled with Fe-Pro appear as a signal void on the MR image (Figure 3). In contrast, the defect loaded without cells (empty Gelfoam) appears brighter with a signal resulting from the scaffold.

Discussion and conclusions

Quantitative imaging appears promising and may potentially provide information beyond morphological changes in articular cartilage, with regards to early cartilage degeneration and biochemistry and further studies are clearly warranted. Stem cell labeling with Fe-Pro results in a significant loss of SI in MRI. The in vitro and ex vivo results suggest that this method of cell tracking could be applied to in vivo detection of stem cell therapies. Following initial detection of transplanted cell populations, this minimally invasive technique could allow for in vivo longitudinal tracking of therapy.

References