Cancellous bone minimodeling-based formation: A Frost, Takahashi Legacy

W.S.S. Jee, X.Y. Tian, R.B. Setterberg
Division of Radiobiology, University of Utah School of Medicine, Salt Lake City, UT, USA

Abstract

The current dogma is that in adult human beings, remodeling creates nearly all the new cancellous bone tissue. However, Frost, Takahashi and colleagues hypothesized that minimodeling can go on in trabeculae throughout life. The current perspective will review the available reports on minimodeling-based formation to determine whether there is any support for his hypothesis. One: describe the methodology employed to characterize remodeling and minimodeling formation sites or packets, which restrict the analyses of these packets to a known age of the specimen. Two: present quantitative minimodeling data on cancellous bone of aging rats and transiliac bone biopsy of adult humans. Three: describe the occurrence and quantification of mixed remodeling-minimodeling formation sites that could be misinterpreted as minimodeling sites. Fourth: present irrefutable evidence that bone anabolic agents initiate minimodeling-based formation sites. Fifth: discuss the mechanism of minimodeling-based formation may be the resumption of osteoblastic activity by bone lining cells to increase cancellous bone mass and trabecular connectivity. The findings of minimodeling is a rare activity in normal individuals, but may occur in a select population, and bone anabolic agents can initiate minimodeling-based formation are in support of Frost’s hypothesis that minimodeling can continue throughout human life. Thus, another Frost, Takahashi legacy lives on.

Keywords: Bone Histomorphometry, Modeling, Minimodeling, Bone Anabolic Agents, Bone Lining Cells

The Frost, Takahashi and Colleagues Legacy

Frost, Takahashi and their colleagues define bone modeling as any biologic activity which shapes and sizes organs to provide optimal mechanical function (mechanical competence). Modeling can mean holding back growth in some places and increasing it in others to create and/or maintain functionally and purposefully shapes and sizes, usually for biomechanical reason. As an activity, bone formation and resorption in a specific bone site are independent and not coupled to each other. When modeling activities are induced on previously quiescent bone surfaces, either bone formation (A-F) or bone resorption (A-R) follows activation. As no osteoclastic bone resorption precedes bone formation in bone forming modeling sites, the cement lines are typically smooth. These cement lines are also called arrest lines because they are found during the temporary arrest of osteoblastic activity. In cortical bone the above kinds of modeling is defined as macromodeling, and for trabeculae, minimodeling (Figure 1). Frost assumed that on trabeculae, the same modeling in miniature might provide adaptation to excessive strain, a process Dr. Frost termed minimodeling, because magnification is required to see it. In the rapidly growing skeleton, most of the cancellous bone-forming sites were minimodeling sites. There is a transition of bone turnover activity from modeling to remodeling in relation to a reduction in longitudinal growth with aging.

In 1964, Takahashi, Hattner, Epker and Frost reported 96.7% of 5400 cement lines in 57 normal adults were scalloped. They further wrote, "with respect to the formation process occasionally "flows" beyond the perimeter of the preceding and underlying process. Thus if a section of that region, on the smooth part of the cement line, will be included in the section". The above observations were the first report that suggest such overfilling would increase mean wall thickness and overfilling of resorption cavities onto quies-
cent surfaces, both resulting in a positive BMU balance, and minimodeling was a rare event in the cancellous bone in adult skeletons. Thus in the adult skeleton, remodeling creates nearly or all the new bone tissue. Nevertheless in 1990, Frost hypothesized that mini-remodeling in trabeculae can go on throughout life.

Comparison of remodeling and modeling parameters

Parfitt in 1983 constructed a table comparing six important aspects of how modeling differs from remodeling in location, coupling, timing, extent, apposition rate and balance (Table 1, items 1-6). First (location), in modeling, resorption and formation occur on different bone surfaces. Second (coupling), in modeling, there is no coupling between resorption and formation to achieve changes in size and shape and is subject to independent regulation. Third (timing), the timing in modeling drift activity is continuous, whereas in remodeling each surface is subject to repeated cycles of resorption, formation and quiescence. Fourth (extent), in modeling surfaces the extent can be large. During growth, the entire periosteal and endocortical surface is the site of formation and resorption drift at all times. Fifth (apposition rate), in remodeling it is less than 1 μm/day and is much slower than that with modeling of 5 μm/day that varies with age. Sixth (balance), modeling produces a net gain in bone mass while remodeling produces either no change or net loss.

Over the years, I have updated Parfitt’s original table to modify item 4 on extent for modeling and item 6 for balance for remodeling as well as add on 5 items involving cement line, surfaces, occurrence, function and minimum effective strain (MES) thresholds for humans (items 7-11, Table 1). In item 4 (extent) under modeling, “variable” was substituted to cover the large surface involved in growing skeletons and small surface from of budding on trabecular surfaces by mini-modeling in adult skeletons from select anabolic agents. Likewise in item 6 (balance), under remodeling, added was “gain” as in induced positive remodeling bone gain from anabolic agents. In addition, seventh (cement lines), the occurrence of smooth versus scalloped cement lines in modeling compared to remodeling units. Eighth (surfaces), remodeling activities are restricted to adjacent to marrow while at all surfaces with modeling. Ninth (occurrence), modeling is prominent during growth and ineffective in adults whereas remodeling occurs throughout life. Tenth (function), remodeling maintains bone mass and repairs microdamage whereas modeling changes shape and size for mechanical competence. Finally, eleventh (MES threshold), the estimated threshold for remodeling in humans is less than 1000 microstrain and to activate modeling is more than 2000 microstrain (12-14, Table 1).

In summary, the main characteristics of remodeling and modeling are as follows: Remodeling is the prevailing activity in the skeleton containing scalloped cement lines from A-R-F which maintains and repairs bone tissue; and modeling which is prominent during growth contains smooth cement lines, formation drift (A-F) and resorption drift (A-R) which sizes and shapes bone tissue.

![Figure 1. Bone modeling patterns. A and B: example of macromodeling of cortical bone; C: example of minimodeling of cancellous bone.](image-url)
Methods of characterizing remodeling and minimodeling formation sites

The technology to quantitate modeling remodeling sites involves the preparation of serial 5 μm thick undecalcified bone sections, multiple in vivo fluorochrome labeling, staining and classifying smooth and scalloped cement lines and polarized light microscopy to visualize collagen orientation. The multiple fluorochrome labeling gives information helping to locate the position of the cement lines for a recent episode of bone formation. The labeling allows one to restrict the analysis to bone structural units formed at a known age of the animal or human. To obtain excellent staining of cement lines, Erben recommends the surface staining technique with 1% Toludine blue, whereas Takahashi employed Villaneuva bone stain prior to methyl methacrylate embedding. For each trabecular site actively forming bone, i.e., a labeled site, the corresponding cement line was analyzed using polarized light to visualize the orientation of collagen fibers. A remodeling site was defined with scalloped cement line with interrupted collagen fibers in the adjacent bone underlying the forming site, indicating previ-
ous resorption15-17,20-22 (Figures 2, 5A, 5B). Minimodeling site was defined with smooth cement line without interruption of surrounding collagen fibers15-17,20-22 (Figures 3, 5E, 5F).

Quantitative minimodeling data from aging rats

Erben15 did a classical remodeling/minimodeling study in his aim to elucidate whether bone resorption and bone formation are coupled in a manner typical of bone remodeling in the rat by analyzing cancellous bone in rats of different ages with a combination of \textit{in vivo} fluorochrome labeling with cement line staining. In vertebral cancellous bone, remodeling was the main turnover activity at all age groups (3, 6, 9 and 12 months of age). In the proximal tibial metaphysis of 3-month-old rats they were classified as modeling, but in 12-month-olds remodeling was the dominant activity (Figure 4). There was reduced modeling and increased remodeling in relation to the reduction in longitudinal growth with aging. He concluded his study suggests that, similar to higher mammals, the prevailing activity in cancellous bone of aged rats is remodeling. Unfortunately, the study did not include older rats with sites containing closed growth plates.

Minimodeling data from adult human specimens

Minimodeling-based formation sites (packets) may be a rare phenomenon in normal and postmenopausal individuals. Takahashi et al., reported that 3.3\% of 5400 cement lines in cancellous bone from rib biopsy specimens from 57 normal adults. They commented that these smooth cement lines might have originated from overfilling of resorption cavities. However, in a study of iliac crest biopsy from patients undergoing total hip arthroplasty by Kobayashi et al.16 discovered 62\% of 34 patients had packets with smooth cement lines. A comparison of specimens with and without minimodeling found that the presence of minimodeling packets was correlated with smaller physique of patient, accelerated mineralization, and

![Figure 3](image1.png) Minimodeling formation site or packet on trabecula. Conventional (A), fluorescent (B), and polarized (C) light micrographs of a trabecula with minimodeling in a transiliac bone biopsy specimen from a 69-year-old woman who underwent total hip arthroplasty for osteoarthritis of the hip (5 \(\mu \)m-thick undecalcified section; Villanueva bone stain; scale bar=50 \(\mu \)m). (D) A schematic representation of C: M1, minimodelling; CM: smooth cement line which does not interrupt surrounding collagen fibers; and Q: quiescent surface. (Modified from Kobayashi et al. Bone 2003; 32:163-16916 and printed with permission from Elsevier).

![Figure 4](image2.png) Modeling and remodeling activity in cancellous bone in aging rats. (a) Lumbar vertebral cancellous remodeling formation sites increased from 70.4±2.2\% (mean±SEM) in 3-month-old rats to 91±2.4\% in 12-month-old rats. The percentage of modeling sites decreased from 17.1±1.7\% at age 3 months to 4.67±1.84\% at age 12 months. (b) Proximal tibial metaphysis cancellous minimodeling site at 3 months of age was 61.6±3.6\% and 21.1±3.1\% as remodeling sites. In 12-month-old rats, 66.3±3.4\% was classified as remodeling and 16.0±3.1\% as modeling sites. (Reprinted with permission of Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc. Erben RG. Anat Rec 1996; 246:39-4616).
higher bone turnover. Two recent studies dealing with iliac crest biopsy specimens reported no minimodeling packets. One was in a short-term study of the effect of teriparatide (1-34 hPTH) on transiliac bone biopsy specimens from 9 placebo-treated postmenopausal individuals22 and a second, a longer-term study with teriparatide that dealt with 55 baseline specimens, 22 were placebo-treated postmenopausal women20, in which no typical minimodeling-based formation was found in these specimens.

Confounding factors in minimodeling formation sites: The mixed remodeling-modeling formation packet

As mentioned earlier, it was in 1964 that Takahashi et al.1 suggested that the 3.3 percent minimodeling packet they observed may have actually originated from resorption cavites in which the formation phase overflowed onto quiescent bone surfaces. It was not until 2002 that Kobayashi et al.16, in their 2003 publication showed such a structure but failed to describe it as a mixed remodeling minimodeling packet possessing a short scalloped cement line followed by a longer smooth cement line (Figure 2D). In 2003, both Ma et al.17,19 and Lindsay et al.21,22, described the overfilling of bone formation from remodeling sites after teriparatide treatment. Ma et al.17,19 named these ‘mixed remodeling-minimodeling formation sites’ or ‘packets’ (Figures 5C, 5D). Thus, such packets cannot be classified as modeling forming sites originating from quiescent bone surfaces, but as overfilling of remodeling sites overlying on to quiescent bone surfaces or optimistically as mixed remodeling-minimodeling packets because it is not known whether such sites may have activated bone-lining cells to resume bone formation. Ma et al. also suggested that it is critical to analyze the minimodeling packets with longitudinal cutting orientation to avoid classifying the formation phase of a remodeling pack-
et as a minimodeling packet. The other alternative is the
tedious analyses of serial sections17,20.

Another confounding factor would be that osteoclastic
resorption might not leave behind a scalloped cement line.
Osteoclasts could erode down to a trabecula and resorb
along its lamellar plate without leaving a scalloped cement
line. Thus, the assumption that smooth cement line implies
minimodeling probably will be difficult to confirm22.

**Bone anabolic agents initiate minimodeling-based
formation**

There is irrefutable evidence that bone anabolic agents
(i.e., PTH, PGE\textsubscript{2} and vitamin D analogs) initiate minimodeling-
based formation sites or packets. In animals, Zhou et
al.23 and Ciu et al.24 reported daily PGE\textsubscript{2} treatment of 3 mg
PGE\textsubscript{2}/kg for 10 days in 20-month-old male rats initiated
increased minimodeling packets in the cancellous bone of
proximal tibial metaphysis and lumbar vertebral body by 4.3
and 2.3 folds, respectively, compared to controls. These minimodeling packet values may have been overestimated
because some may be mixed-remodeling-minimodeling
packets.

Short and long term teriparatide (1-34 hPTH) treatment
on cancellous bone from human transiliac bone biopsy sam-
ple showed it initiated minimodeling-based formation sites
(Figures 5E, 5F). Lindsay et al.22 quantitated minimodeling- and remodeling-based packets in postmenopausal women
treated with teriparatide for 28 days to be 30.8\% minimod-
eling based and 69.2\% remodeling based formation. Again,
the minimodeling formation sites may be overestimated
because they may have originated from resorption sites. A
12-24 months 40 ìg teriparatide study by Ma et al.17 found
minimodeling, mixed remodeling-minimodeling and remod-
eling-based formation of 3.8\%, 3.9\% and 92.3\%, respectively,
compared to placebo treated. Apparently, the dominant
activity with longer teriparatide treatment is remodeling-
based formation.

Target cells for minimodeling-based formation

Hodsman and Sheen25 postulated that daily PTH could
induce bone formation on quiescent surfaces or on mini-
modeling-based formation. The mechanism proposed is the
resumption of bone formation by bone lining cells36-27. Added evidence is PTH-induced increase in osteoblast num-
ber from the modulation of bone lining cells in a fatty mar-
row bone site, the caudal vertebral body20. Because bone lining
(cells are abundant and lacking osteoprogenitor stem cells
at skeletal sites with yellow marrow28-29, the observation of
PTH markedly increasing osteoblast surface in the caudal
vertebra is consistent with the resumption of osteoblastic
activity by bone lining cells31.

**Increased trabecular connectivity with minimod-
eling-based formation**

The animal findings suggest minimodeling-based forma-
tion would increase trabecular connectivity. Erben32
described adjacent spicules reconnected by excess osteoblastic
formation with high doses of calcitriol, a vitamin D ana-
log (Figure 6). Recent quantitative studies in rats treated
with alfalcacidol, a vitamin D analog, found cancellous bone
of the proximal tibial metaphysis and the lumbar vertebral
body with increased trabecular connectivity of +52\% and
+160\%, respectively. In addition, a strong correlation was
found between minimodeling-based bone bouton or buds and the increased connectivity (unpublished data).

The human transiliac bone biopsy data reported by Jiang et al. reported teriparatide (1-34 hPTH) treatment of postmenopausal women with osteoporosis increased cancellous bone volume (teriparatide: +14%; placebo: -14%; p=0.001) and cancellous connectivity density (teriparatide: +19%; placebo: -14%; p=0.034). They concluded the increased bone volume and connectivity along with reduced marrow star volume and structure model index should improve biomechanical competence and are consistent with the observed reduction in vertebral and non-vertebral fractures.

Summary

In summary, although Kobayashi et al. reported an incidence of 62% minimodeling-based formation sites in transiliac bone biopsy specimens from 34 patients undergoing total hip arthroplasty, there are numerous studies indicating that it is a rare event in normal individuals. These latter studies tend to support Frost’s hypothesis that minimodeling-based formation can continue throughout human life. However, more studies are needed in that Kobayashi et al. reported there was a subset of individuals with smaller physique, accelerated mineralization and higher bone turnover rate that only demonstrated minimodeling-based formation. There is irrefutable evidence that bone anabolic agents can initiate minimodeling-, mixed remodeling-, minimodeling and remodeling-based formations. Minimodeling activity was more prominent at early treatment leading to increased bone mass and trabecular connectivity. The unchallenged findings that anabolics can induce activity are in support of Frost’s hypothesis that minimodeling can occur throughout life. Thus, another legacy from Harold M. Frost and H.E. Takahashi lives on.

References

23. Zhou H, Ma YFm, Yao W, Cui L, Setterberg RB, Liang CT, Jee WSS. Lumbar vertebral cancellous bone is capable of responding to PGE₂ treatment by stimulating both modeling and remodeling-dependent bone gain in aged male rats. Calcif Tissue Int 2001; 68:179-184.

