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With the promise of harnessing stem cells to generate
skeletal tissue, remains the challenge of creating tissue of suf-
ficient mechanical quality. Bone matrix material properties, in
addition to bone mass and architecture, determine the ability
of bone to resist fracture1. Several hormones and growth fac-
tors that control bone mass and architecture have been iden-
tified, including parathyroid hormone and female reproduc-
tive hormones2,3. However, little is known about the mecha-
nisms that control the material properties of skeletal matrices.
The material properties of the bone matrix are products of
both the organic and mineral content. For example, individu-
als with osteogenesis imperfecta suffer from a high incidence
of bone fracture because of collagen mutations that disrupt
the organic and mineral structure of the bone matrix4.

TGF-‚ regulation of bone matrix material
properties

We have recently identified TGF-‚ as a key regulator of
bone matrix mechanical properties and composition5. Bone
matrix properties were tested in mice with genetic alter-
ations in TGF-‚ signaling. These data were the first to show
that the mechanical properties of bone matrix are regulated,
specifically through a pathway including TGF-‚, the TGF-‚
receptor, and Smad3. Thus, a partial reduction of TGF-‚ sig-
naling increases several mechanical and compositional prop-
erties of bone, including increased bone matrix mechanical
properties, mineral concentration, cortical thickness, trabec-
ular bone volume, and fracture resistance. These conclusions
were derived using atomic force microscopy (AFM), X-ray
topographic microscopy (XTM), and 3-point bending.

TGF-‚ repression of Runx2 function and terminal
osteoblast differentiation

We previously showed that TGF-‚ inhibits terminal
osteoblast differentiation by repressing Runx2, a critical tran-
scriptional regulator of osteoblast differentiation6. Specifically,
TGF-‚ activates Smad3 to bind and inhibit Runx2 function. We
have since shown that histone deacetylases 4 and 5 (HDAC4/5)
are required for this transcriptional repression7 overexpression
or knockdown of Smad3 and HDAC4/5 activity in retrovirally
infected cells or by siRNA altered osteoblast differentiation.
Therefore, we showed that Runx2, Smad3 and HDAC4/5 are
required for TGF-‚ to inhibit terminal osteoblast differentia-
tion. These findings are supported by the phenotypes of Smad3
and HDAC4 null mice, which exhibit premature chondrocyte
and osteocyte terminal differentiation8-10.

TGF-‚ regulation of Runx2 function in vivo

That Runx2 is downstream of TGF-‚ in vivo is supported
by the appearance of a cleidocranial dysplasia-like pheno-
type in both Runx2+/- mice and in D4 mice that overexpress
TGF-‚ in osteoblasts under control of the osteocalcin pro-
moter11-13. Both mouse lines exhibit dysplastic or absent clav-
icles and patent cranial sutures. The similarity in the
Runx2+/- and D4 phenotypes is consistent with the ability of
TGF-‚ to repress Runx2 function, as was observed in vitro6.
We are further investigating the extent to which TGF-‚ reg-
ulates Runx2 expression and function in vivo. Specifically, we
are investigating whether Runx2 is also downstream of TGF-
‚ in the control of bone matrix material properties.

Bone disease-associated hearing loss:
bone matrix material properties in the ear

Though each bone has "signature" matrix mechanical proper-
ties, the functional significance of this local regulation remains
unclear. However, the composition and mechanical properties
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of bone are clearly important for normal hearing. Very little is
known about the role of bone in hearing. Hearing loss is associ-
ated with a number of human bone diseases including otoscle-
rosis, osteogenesis imperfecta, Paget’s disease, Camurati-
Engelmann disease, and cleidocranial dysplasia14-19. The defects
in some of these human bone diseases are related to impaired
bone matrix properties, TGF-‚ signaling, and Runx2 function
(Table 1). This hearing loss can be conductive or sensorineural
in origin. Although bone in the ear has several unique properties
and is critical for the development of the neural structures of the
ear, the role of bone in sensorineural hearing loss is not under-
stood. We are currently investigating the role of bone matrix
properties in hearing, as well as identifying the pathways that
control these properties in the ear. Specifically, auditory brain-
stem response testing is used to measure hearing in mice with
mutations that affect TGF-‚ or Runx2 function. The bone
matrix material properties of the cochlear capsule are measured
using atomic force microscopy with nanoindentation, while ear
structure is examined histologically and radiologically. These
studies provide an insight into the functional role of bone matrix
material properties in auditory structure and function.
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Disease Observed defect Refs.
Otosclerosis Inappropriate bone remodeling, 19

gene(s) unknown
Osteogenesis Poor bone matrix mechanical 18
Imperfecta properties due to collagen mutation
Paget's Disease Reduced cochlear bone mineral 14

concentration, gene(s) unknown
Camurati-Engelmann TGF-‚ mutation 17
Disease
Cleidocranial Heterozygous loss of function 15,16
Dysplasia mutation of Runx2

Table 1.


