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I. Introduction

In healthy postnatal mammals, it is an elementary obser-
vation that their load-bearing bones, joints, growth plates,
fascia, ligaments and tendons have enough strength to keep
voluntary mechanical usage from fracturing or rupturing
them or from causing arthroses1. Thus, such organs have a
strength-safety factor (SSF)2-5. Table 1 lists and defines the
abbreviations in this article.

Stress equals force per unit area, and unit loads such as
kg/mm2 of a load-bearing organ’s cross section area provide
one way to express stress. A stress of 100 mpa (megapascals)
corresponds to a unit load of 100 Newtons/mm2 and to ≈ 10
kg/mm2 6. Given that, dividing the ultimate stress (Fx) of a
load-bearing skeletal organ by the typical peak stress (PS)
caused by a subject’s voluntary physical activities can define
and equal that organ’s strength-safety factor (SSF)3, so:

Fx ÷ PS = SSF Relation 1
Two questions about such organs concern this article:

What biologic mechanisms create the SSF? How many times
stronger is a healthy load-bearing organ than the minimum
needed to keep voluntary loads from breaking it?

Herein, “load-bearing” organs exclude bones like the cra-
nial vault and the ethmoid, nasal and turbinate bones. Such
organs also exclude the cartilages in the nose, ear and tra-
chea, and the collagenous periosteum and perichondrium.
Herein, “voluntary” means intentional, not due to trauma
and not due to jumping from heights. Therefore, such loads
would include muscle forces.

This article summarizes some physiology that can explain
why load-bearing bones have an SSF, and that can reveal the
SSF’s magnitude for bones. “Connecting the dots” between
many ideas and facts from many lines of inquiry provided by
many people revealed those features and led to the Utah
paradigm of skeletal physiology3-6 (over 80 years ago, con-
necting the dots between many kinds of facts in physics that
many people found let a Swiss postal clerk realize that E =
mc2). This article concludes by suggesting that features anal-
ogous to those for bone and bones could explain SSFs for
extraosseous load-bearing organs (joints, growth plates, fas-
cia, ligaments, tendons).
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Herein, “load-bearing” distinguishes intact organs from
the materials or tissues that form them. The cited references
provide more details for readers who might want them, or
indicate where to find those details.

II. Summary of the bone physiology

1) Four physical factors in mammalian postnatal whole-
bone strength6-12.

These factors include bone’s properties as a material (the
material properties factor); the amount of microdamage
(MDx) in the bone (the MDx factor); the amount and kind
of bone in a bone’s cross section – compacta and spongiosa,
woven and lamellar bone – (the bone mass” factor); and the
bone’s cross and longitudinal shape and size, and the distri-
bution and orientation of bone tissue within it (the geometry
or architectural factor).

When compared to effects of the other three factors on
whole-bone strength, bone’s material properties differ rela-
tively little with age, in different bones and species, and in
disease (osteomalacia excepted9). Expressed as a stress, cor-
tical bone’s ultimate strength ≈ 120 mpa in healthy young
adult mammals (a bit less in children and a bit more in aged
adults)9,13-15. Herein, “whole bone” distinguishes bones as
intact organs from bone as a material or tissue.

Similar physical factors should determine the strength of
extraosseous load-bearing skeletal organs.

2) Biologic determinants of postnatal mammalian
whole-bone strength3-6.

(i) One multicellular mechanism called modeling by sepa-
rate formation and resorption drifts16 has the function of
increasing whole-bone strength.

(ii) The “disuse mode” of a second multicellular mecha-

nism called BMU-based remodeling16 has the function of
reducing whole-bone strength.

Mechanical loads on bones cause corresponding strains
that generate corresponding signals which some cells can
detect and respond to6,17. Those signals can control how the
above modeling and remodeling functions affect a load-
bearing bone’s strength. Where bone strains approach or
exceed one threshold range called the modeling threshold
(MESm), the modeling function usually turns on to strength-
en a bone. When strains stay below a lower remodeling
threshold range (MESr), the disuse-mode remodeling func-
tion usually turns on to reduce that bone’s strength. Bone’s
MESm range seems to center near 20 mpa, while its MESr
range may center near one to two mpa3.

Those two thresholds have at least three effects.
(i) During voluntary activities the thresholds would make

the typical largest stresses of a normally-adapted load-bear-
ing bone approach but not exceed the modeling threshold
expressed as a corresponding stress. Thus, in normally-
adapted bones the PS (peak stress) in Relation 1 above
would equal the MESm expressed as a stress, so that relation
can be rewritten thus:

Fx ÷ MESm = SSF Relation 2
(ii) Those thresholds would make the largest voluntary

bone loads have disproportionately greater effects on whole-
bone strength than smaller loads no matter how frequent6,17.
Trauma excepted, muscle forces instead of body weight cause
the largest loads on load-bearing bones, and thus their
largest stresses too3,6,9.

(iii) The MESm’s effect on bone modeling would make
healthy young adult load-bearing bones strong enough rela-
tive to the typical peak voluntary loads on them to keep their
stresses within or below the lower boundary of the MESm
range.

Abbreviations used in this article

BMU: basic multicellular unit of bone remodeling

Fx: a load-bearing organ’s ultimate strength expressed as a stress

kg: kilograms of force

M: the meter, a unit of length

MDx: microscopic fatigue damage

MESm: a structural tissue’s modeling threshold range expressed as a stress

MESp: the microdamage threshold range

MESr: the threshold range that turns disuse-mode remodeling on

mpa: megapascals, = millions of Newtons/M2

PS: typical peak stress caused by voluntary activities, not by trauma

SSF: a load-bearing organ’s strength-safety factor

≈: approximately equals

Table 1.
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Repeated bone loads and strains (and stresses) cause
microscopic fatigue damage or microdamage (MDx) in
bones8,18-20. MDx increases bone fragility without affecting
bone architecture or “mass” in any way. Bone has an opera-
tional MDx threshold range (MESp). Where bone strains and
stresses stay below it remodeling BMUs can repair whatever
MDx occurs, but strains in or above the MESp range can
cause enough MDx to escape repair, accumulate, and cause
nontraumatic fractures8,20. Hence, pseudofractures in osteo-
malacia, stress fractures in athletes, and spontaneous frac-
tures in true osteoporoses3,8. Bone’s MESp range seems to
center near 60 mpa.

MDx also occurs in load-bearing organs made from carti-
lage and collagenous tissue.

Collectively the above things plus some others form a tis-
sue-level negative feedback system called bone’s mechanos-
tat6,16,21. It would orchestrate the biologic activities that make
load-bearing bones strong enough so voluntary loads do not
break them3. If so, persistently strong muscles should usual-
ly associate with correspondingly strong bones, and persist-
ently weak muscles should usually associate with corre-
spondingly weak bones. Both things are true1.

Table 2 lists values for the above three thresholds, and for
bone’s ultimate strength, in corresponding microstrain,
stress and unit-load units. Note that bone modeling and
remodeling have further functions22,23.

III. Bone’s SSF

When expressed as unit loads or stresses, the SSF in prop-
erly-adapted young adult load-bearing mammalian bones
would ≈ 6, since Fx ÷ MESm = 120 ÷ 20 = 6 (see Relation 2
and Table 2). Thus, such bones are about six times stronger
than the minimum needed to keep voluntary loads from
breaking them. A lower SSF value of ≈ 2 suggested earlier24

used bone’s yield point instead of its MESm to calculate it,
and its yield point is a range centered near 60 mpa, like
bone’s MESp3. The yield-point stress is well above the
largest allowed stress in healthy bones that defines and
equals the MESm.

Question: Why not express the SSF in strain terms? Using
the microstrain values in Table 2, Fx ÷ MESm = 25,000 ÷
1000 = 25(!). Yet healthy bones are clearly not 25 times
stronger than needed to carry the typical largest loads on
them. That value of 25 may be one way to define an SSF but
it does not answer the question that concerns us here. To wit:
how much stronger is a healthy bone than the minimum
needed to carry its largest voluntary total loads without
breaking?

IV. Comments

The threshold “ladder”.
Whether expressed as stresses, unit loads or microstrains,

bone’s MESr lies below its MESm, which lies below its
MESp, which lies below its ultimate strength. Thus, where
“E” signifies the typical peak stresses in a normally-adapted
young adult bone:

MESr < “E” < MESm << MESp <<< Fx    Relation 3
Relation 3 has been called a general biomechanical rela-

tionship25.
Please note four things. (i) Section #5 below suggests that

relationship would apply to healthy estraosseous load-bear-
ing skeletal organs after birth. (ii) Above its Hookean range
(above ≈ 60 mpa or 3000 miscrostrain), bone’s stress-strain
relationship becomes a curved line, and doubling the strain
no longer doubles the stress too9,15 (the “Hookean range” is
that elastic range within which strain and the resulting stress-
es stay linearly proportional to each other). (iii) A modeling
threshold that lies below a load-bearing organ’s ultimate
strength must create an SSF. Why? The mechanostat would
normally adjust whole-bone strength to keep voluntary activ-
ities (meaning muscle strength – and power?) from causing
peak stresses above the MESm range. When that range lies
below an organ’s ultimate strength (when MESm << Fx) an
SSF must result, regardless of however else one might
choose to name it. (iv) Still, the mere existence of an SSF
does not prove an MESm exists and/or causes the SSF.

Values for bone’s thresholds and ultimate strength

(in microstrain, stress and unit load units)*

MESr: 50-100 microstrain; 1-2 mpa; ≈ 0.1 kg/mm2

MESm: 1,000-1,500 microstrain; ≈ 20 mpa; 2 kg/mm2

MESp: 3,000 microstrain; ≈ 60 mpa; 6 kg/mm2

Fx: 25,000 microstrain; 120 mpa; 12 kg/mm2

*: values for analogous features for chondral and collagenous tissue organs are currently unknown. The values

cited for bone apply to cortical bone and are based on currently available information.

Table 2.
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Some set point and aging considerations.

Cybernetic and other considerations26,27 suggest the mod-
eling and remodeling thresholds reside in some skeletal cells
as genetically-determined internal standards17,27. Their val-
ues might differ in some people for genetic reasons, and age
and some humoral agents such as hormones, vitamins, min-
erals, drugs, etc., might modify their values6. Herein, the cen-
ters of those threshold ranges would define their set points.

In principle, modestly supranormal set points could lower
bone’s SSF from 6 to, say, 4. If so, affected bones would be
more susceptible to fractures without significant abnormali-
ties in composition or histology. If the MESm set point
increased modestly while the MESp remained normal,
affected bones would show a tendency to excessive MDx and
stress fractures. Why? An increased MESm would allow
larger bone strains and stresses, which usually increase
MDx19. On the other hand, modestly subnormal MESm and
MESr set points would make affected bones stronger than
normal and less susceptible to traumatic and stress fractures
and MDx6.

In that regard, clinicians do occasionally see patients who
seem unusually susceptible to traumatic or stress fractures
without any known abnormalities in body or bone biochem-
istry, histology or composition1. Also, R. Recker described
patient cohorts in whom stronger and “denser” bones than
normal occur28. Whether these set point ideas explain such
things is currently unknown, but the idea seems attractive.

The modeling activities that increase whole-bone strength
during growth are sluggish, so increasing bone strength can
lag behind mechanical needs in children, in whom bone loads
from body weight and muscle strength steadily increase29. If
so, typical peak bone strains from voluntary mechanical usage
in children should somewhat exceed those in young adults in
whom body weight and muscle strength usually plateau, so
bone strength could “catch up” to mechanical needs in those
young adults. Those things do occur6,30. That means more
fractures should occur during childhood than in young adult
life, as they do31,32. Accordingly that “adaptational lag” in
children’s functional adaptations to bone loading, especially
during the adolescent growth spurt29, could temporarily
decrease the SSF in affected bones.

On strain rate, kind, magnitude, frequency.
Studies and discussions continue of the relative roles of

such strain features in controlling the functional adaptations
of load-bearing bones to their voluntary loads6,17,33. While it
seems logical that evolution learned to adapt bone strength
to the greatest usual threat to structural integrity and, trau-
ma excepted, that typical peak voluntary loads on bones
would provide that usual threat, investigators found that
loading frequency and rates might have unexpected but ther-
apeutically useful effects on whole-bone strength33,34. Also,
in my view the role of shear strains in controlling the func-
tional adaptations of load-bearing skeletal organs has prob-
ably been underappreciated3,22,35.

So in these matters devils still lie in the details, and dis-

agreements persist because reasonable people can interpret
the same facts differently. More work must resolve such issues.

On some role(s) of genes.
By the time of birth gene expression patterns in utero have

created the biologic machinery and “game rules” that control
postnatal skeletal physiology. After birth that genetically-pre-
determined machinery and collection of game rules, called
the “baseline conditions” elsewhere3, make the largest typical
voluntary loads determine the strength of most load-bearing
skeletal organs. Ergo, determining their strength would rep-
resent a genetic-biomechanical duet, not a genetic or biome-
chanical solo. Current disagreements concern whether genet-
ic or biomechanical factors dominate in that duet.

On extraosseous skeletal load-bearing organs (joints,
growth plates, fascia, ligaments, tendons).

After birth bone’s mechanostat makes voluntary mechan-
ical usage determine a load-bearing bone’s strength. While
devils still lie in the details, the experimental and other facts
on which that general physiology depends seemed fairly
robust in 2002 AD, noting that Michael Parfitt recently
called bone’s mechanostat “…. the most important unsolved
problem in bone biology….”36.

Many clinical, pathologic and other facts suggest to me
that load-bearing extraosseous skeletal organs have general
features analogous to those of bones. That is, such organs
should have their own modeling, disuse and MDx thresholds,
their own MDx detection and repair mechanisms, separate
biologic mechanisms to increase and decrease their
strengths, their own associated signaling mechanisms and
cells, their own but analogous responses to muscle forces,
and their own mechanostats37-43. Normally they are all nor-
mally stronger than needed to endure the voluntary loads on
them so they do have their own SSFs. As an example, such
things could explain why the strength of a healthy tendon
always matches the strength of the muscle that pulls on it.

However, the kinds and number of studies that support
the above physiology for bone and bones do not yet exist for
extraosseous skeletal organs. Nevertheless I would suggest
four things about them here. (i) Those extraosseous organs
should have their own mechanostats and all that implies. (ii)
Those mechanostats would all have the same goal: making
their organs strong enough to keep typical peak voluntary
loads from rupturing them or causing arthroses37,38,41-43. (iii)
Relation 3 and the things it implies should apply to those
extraosseous organs too. (iv) Those ideas could help to
direct some future studies about the roles of biomechanics in
the strength and health of our extraosseous load-bearing
skeletal organs.
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